OptiSystem仿真模型案例 - 图文 联系客服

发布时间 : 星期五 文章OptiSystem仿真模型案例 - 图文更新完毕开始阅读

在非线性光纤的参数设定中,我们只针对自相位调制效应进行检测分析,所以我们可以禁掉其他非线性效应,如图3.4所示。

当脉冲的峰值功率为10mW,光纤长度设为10km时,得到的结果如图3.5所示:

图3.5 经过10.73km的光纤前(上图)后(下图)的脉冲波形和啁啾

从图3.5中可看到脉冲的波形保持不变,但由于自相位调制效应,产生了啁啾声。脉冲前端红移,而后端蓝移。如果存在反常色散,则可能发生由于SPM的啁啾而导致脉冲波形会变窄。这说明SPM效应和GVD的作用正好相反。

为了观察SPM导致的光谱展宽,我们需要引入:φmax= γP0z。其中P0是峰值功率。图3.6中为未啁啾高斯型输入脉冲在不同的最大相移值时(0~3.5π)的光谱图。自相位调制和啁啾以方程3.1联系在一起。根据图3.5,在两个不同t值时的啁啾相同,说明在两个不同的点上瞬时频率为相同的一个。这两个点代表两个相同频率的波,能够相长或者相消的互相作用,

导致了脉冲光谱的振荡结构。

图3.6 未啁啾高斯脉冲的不同相移时的光谱

由于SPM导致脉冲展宽依赖于脉冲波形和初始啁啾,图3.7为最大相移φmax=4.5π时,输出端的高斯脉冲的光谱和第三级高斯脉冲的光谱。

图3.7最大相移φmax=4.5π时输出端光谱和第三级高斯脉冲光谱

参考文献:

[1] G.P.Agrawal, Nonlinear Fiber Optics, Academics Press (2001)

4 光放大器 (Optical Amplifiers)设计

4.1 光放大器简介

光放大器,尤其是掺铒光纤放大器(EDFA)的研制成功使光纤通讯技术产生了革命性的变化:用相对简单廉价的光放大器代替长距离光纤通信系统中传统使用的复杂昂贵的光-电-光混合式中继器,从而可实现比特率及调制格式的透明传输,尤其是和WDM技术的珠联璧合,奠定了向未来的全光通信发展的基础。

4.1.1 光放大器分类

主要有三类:

(1) 半导体光放大器(SOA,Semiconductor Optical Amplifer)

(2) 掺稀土元素(铒Er、镨Pr、铷Nd)的光纤放大器;主要是是EDFA,还有PDFA等 (3) 非线性光纤放大器,主要是光纤喇曼放大器(FRA ,Fiber Raman Amplifier)

针对目前以EDFA的发展最为迅速,应用也最为广泛,在本章中,主要以EDFA为主要介绍和设计对象。但这里需要提到的是,OptiSystem也提供了大量SOA, PDFA, FRA等等光放大器的元件库,为设计者提供了十分便利的分析工具和功能。

4.1.2 掺铒光纤放大器的结构

掺铒光纤放大器的英文缩写为:EDFA,其基本结构如图4.1所示。

输入光信号 输出光信号 光隔 光隔 光滤 光耦

离器 离器 波器 合器

泵浦 光源 图4.1 EDFA结构示意图

EDFA主要是由掺铒光纤(EDF)、泵浦光源、耦合器、隔离器以及滤波器等组成。 (1)耦合器(Coupler)将输入光信号和泵浦光源输出的光波混合起来的无源光器件,一般采用波分复用器(WDM)。

(2)隔离器防止反射光影响光放大器的工作稳定性,保证光信号只能正向传输的无源器件。

(3)掺铒光纤是一段长度大约为10~100m的石英光纤,将稀土元素铒离子Er3+注入到纤芯中,浓度一般为25mg/kg。

(4)泵浦光源为半导体激光器,输出光功率约为10~100mW。

(5)光滤波器的作用是滤除光放大器的噪声,降低噪声对系统的影响,提高系统的信噪比。

此外,根据泵浦光源的泵浦方式不同,EDFA又可包括三种结构方式:同向泵浦结构、反向泵浦结构和双向泵浦结构。

EDFA主要优点包括增益高,带宽大、输出功率高、泵浦效率高、插入损耗低和对偏振不敏感等。

掺铒光纤