建环专业热质交换原理与设备考试资料2013最新版 联系客服

发布时间 : 星期一 文章建环专业热质交换原理与设备考试资料2013最新版更新完毕开始阅读

热质交换原理与设备 复习重点

第一章 绪论

三种传递现象的联系:当物质中存在速度、温度和浓度的梯度时,则分别发生动量、热量和质量的传递现象。动量、热量和质量的传递,既可以是由分子的微观运动引起的分子扩散,也可以是由涡旋混合造成的流体微团的宏观运动引起的湍流传递。 动量传递:????du 表示两个作直线运动的流体层之间的切应力正比于垂直运动方向的速度变化率。dy不同的流体有不同的传递动量的能力,这种性质用流体的动力黏性系数?来反映,其物理意义可以理解为,它表征了单位速度梯度作用的切应力,反映了流体黏性滞性的动力性质,因此称它为“动力”黏性系数。?,表示单位时间内通过单位面积传递的动量,又称动量通量密度,N/㎡ 能量传递:q???dt,q为热量通量密度,或能量通量密度,表示单位时间内通过单位面积传递的热量,dyJ/(㎡.s),负号表示热量传递的方向是温度梯度的负方向,或者说热量是朝温度降低的方向传递的。 质量传递:mA??DABdCA,它是指在无总体流动或静止的双组分混合物中,若组分A的质量分数CA的dy分布为一维的,则通过这个式子表示。mA为组分A的质量通量密度,表示单位时间内,通过单位面积传递的组分A的质量,kg/(㎡.s) jA??DABd?A dz动量交换传递的量是运动流体单位容积所具有的动量,热量交换传递的量是物质每单位容积多具有的能量,质量交换传递的量是扩散物质每单位容积所具有的质量也就是浓度。这些量的速率都分别与各量的梯度成正比。比例系数均表示了物体具有的扩散性质。 两种传递系数的比较

分子传递系数ν, a, DAB:1) 是物性,与温度、压力有关;2)通常各项同性。 湍流传递系数νt, at, DABt:1)不是物性,主要与流体流动有关;2)通常各项异性。 热质交换设备的分类

热质交换设备的分类方法很多,可以按工作原理、流体流动方向、设备用途、传热传质表面结构、制造材质等分为各种类型。最基本的是按工作原理分类。 (1)按工作原理分类(可参考书后思考题第二题)

热质交换设备按照工作原理分为:间壁式,直接接触式,蓄热式和热管式等类型。

间壁式又称表面式,在此类换热器中,热、冷介质在各自的流道中连续流动完成热量传递任务,彼此不接触,不掺混。(包括表面冷却器、过热器、省煤器、散热器、暖风机、燃气加热器、冷凝器、蒸发器等) 间壁式换热器种类很多,从构造上主要可分为:管壳式、肋片管式、板式、板翘式、螺旋板式等,其中前三种用的最为广泛。

直接接触式又称混合式,在此类换热器中,两种流体直接接触并且相互掺混,传递热量和质量后,在理论上变成同温同压的混合介质流出,传热传质效率高。(喷淋室及蒸汽喷射泵、冷却塔、蒸汽加湿器、热力除氧器等)

喷淋室的类型:喷淋室有卧式和立式、单级和双级、低速和高速之分。此外在工程上还使用带旁通和带填料层的喷淋室。

立式喷淋器的特点是占地面积小,空气流动自下而上,喷水由上而下,因此空气与水的热湿交换效果更好,一般是在处理风量小或空调机房层高允许的地方采用。

双级喷淋室能够使水重复使用,因而水的温升大、水量小,在使用空气得到较大焓降的同时节省了水量。因此它更适宜于用在使用自然界冷水或空气焓降要求较大的地方。双级喷淋室的缺点是占地面积大,水系统复杂。

混合式换热器的种类 按用途不同,可分为以下几种不同类型:冷却塔、气体洗涤塔(或称洗涤塔)、喷射式热交换器、混合式冷凝器

冷却塔的构造:各种形式的冷却塔,一般包括下面所述的几个主要部分,这些部分的不同结构,可以构成不同形式的冷却塔。(1)淋水装置,又称填料,作用在于能将进塔的热水尽可能形成细小的水滴或水膜,增加水与空气的接触面积,延长接触时间,以增进水气之间的热质交换。 淋水装置可根据水在其中所呈现的现状分为点滴式、薄膜式及点滴薄膜式三种。 (2)配水系统(3)通风筒(见下边)

蓄热式又称回热式或再生式换热器,它借助由固体构件(填充物)组成的蓄热体传递热量,此类换热器,热、冷流体依时间先后交替流过蓄热体组成的流道,热流体先对其加热,使蓄热体壁温升高,把热量储存于固体蓄热体中,随即冷流体流过,吸收蓄热体通道壁放出的热量。

热管换热器是以热管为换热元件的换热器,由若干热管组成的换热管束通过中隔板置于壳体中,中隔板与热管加热段,冷却段及相应的壳体内穷腔分别形成热、冷流体通道,热、冷流体在通道内横掠管束连续流动实现传热。

(2)按热流体与冷流体的流动方向分类(可参考书后思考题第三题)

热质交换设备按照其内热流体与冷流体的流动方向,可分为:顺流式、逆流式、叉流式和混合式等类型。 顺流式称并流式,其内冷、热两种流体平行地向着同方向流动,即冷、热两种流体由同一端进入换热器。 逆流式,两种流体也是平行流体,但它们的流动方向相反,即冷、热两种流体逆向流动,由相对得到两端进入换热器,向着相反的方向流动,并由相对的两端离开换热器。 叉流式又称错流式,两种流体的流动方向互相垂直交叉。

混流式,两种流体的流体过程中既有顺流部分,又有逆流部分。交叉次数在四次以上,可根据两种流体流向的总趋势,将其看成逆流或者顺流。

顺流,逆流区别:在进出口温度相同的条件下,逆流的平均温差最大,顺流的平均温差最小;顺流时冷流体的出口温度总是低于热流体的出口温度,而逆流时冷流体的出口温度却可能超过热流体的出口温度。 (3)按用途分类有:表冷器、预热器、加热器、喷淋室、过热器、冷凝器、蒸发器、加湿器、暖风机等 喷淋室的类型:喷淋室有卧式和立式、单级和双级、低速和高速之分。此外在工程上还使用带旁通和带填料层的喷淋室。 立式喷淋器的特点是占地面积小,空气流动自下而上,喷水由上而下,因此空气与水的热湿交换效果更好,一般是在处理风量小或空调机房层高允许的地方采用。 双级喷淋室能够使水重复使用,因而水的温升大、水量小,在使用空气得到较大焓降的同时节省了水量。因此它更适宜于用在使用自然界冷水或空气焓降要求较大的地方。双级喷淋室的缺点是占地面积大,水系统复杂。

冷却塔的构造:各种形式的冷却塔,一般包括下面所述的几个主要部分,这些部分的不同结构,可以构成不同形式的冷却塔。(1)淋水装置,又称填料,作用在于能将进塔的热水尽可能形成细小的水滴或水膜,增加水与空气的接触面积,延长接触时间,以增进水气之间的热质交换。

淋水装置可根据水在其中所呈现的现状分为点滴式、薄膜式及点滴薄膜式三种。2)配水系统3)通风筒 冷却塔根据循环水在塔内是否与空气直接接触,分为干式,湿式。根据熱质交换区段内水和空气流动方向不同有逆流塔、横流塔之分。

配水系统作用在于将热水均匀的分配到整个淋水面积上,从而使淋水装置发挥最大的冷却能力。常用的配水系统有槽式、管式、池式

通风筒是冷却塔的外壳,气流的通道。

(4)按制造材料分类:金属材料、非金属材料及稀有金属材料等。 思考题1、分子传递现象可以分为几类?各自由什么原因引起的? 答:分为三类:动量传递、热量传递和质量传递现象。 动量传递:流场中的速度分布不均匀(或速度梯度的存在); 热量传递:温度梯度的存在(或温度分布不均匀);

质量传递:物体的浓度分布不均匀(或浓度梯度的存在)。

2、热质交换设备按照工作原理分为哪几类?他们各自的特点是什么?

答:热质交换设备按照工作原理分为:间壁式,直接接触式,蓄热式和热管式等类型。

间壁式又称表面式,在此类换热器中,热、冷介质在各自的流道中连续流动完成热量传递任务,彼此不接触,不掺混。

直接接触式又称混合式,在此类换热器中,两种流体直接接触并且相互掺混,传递热量和质量后,在理论上变成同温同压的混合介质流出,传热传质效率高。

蓄热式又称回热式或再生式换热器,它借助由固体构件(填充物)组成的蓄热体传递热量,此类换热器,热、冷流体依时间先后交替流过蓄热体组成的流道,热流体先对其加热,使蓄热体壁温升高,把热量储存于固体蓄热体中,随即冷流体流过,吸收蓄热体通道壁放出的热量。

热管换热器是以热管为换热元件的换热器,由若干热管组成的换热管束通过中隔板置于壳体中,中隔板与热管加热段,冷却段及相应的壳体内穷腔分别形成热、冷流体通道,热、冷流体在通道内横掠管束连续流动实现传热。

3、简述顺流、逆流、叉流和混合流各自的特点,并对顺流和逆流做一比较和分析。

答:顺流式又称并流式,其内冷、热两种流体平行地向着同方向流动,即冷、热两种流体由同一端进入换热器。

逆流式,两种流体也是平行流体,但它们的流动方向相反,即冷、热两种流体逆向流动,由相对得到两端进入换热器,向着相反的方向流动,并由相对的两端离开换热器。 叉流式又称错流式,两种流体的流动方向互相垂直交叉。

混流式又称错流式,两种流体的流体过程中既有顺流部分,又有逆流部分。

顺流和逆流分析比较: 在进出口温度相同的条件下,逆流的平均温差最大,顺流的平均温差最小,顺流时,冷流体的出口温度总是低于热流体的出口温度,而逆流时冷流体的出口温度却可能超过热流体的出口温度,以此来看,热质交换器应当尽量布置成逆流,而尽可能避免布置成顺流,但逆流也有一定的缺点,即冷流体和热流体的最高温度发生在换热器的同一端,使得此处的壁温较高,为了降低这里的壁温,有时有意改为顺流。

第二章 传质的理论基础

7个基本的物理量:物质的量是国际单位制中7个基本物理量之一(长度、质量、时间、电流强度、发光强度、温度、物质的量),它和“长度”,“质量”等概念一样,是一个物理量的整体名词。单位为摩尔(mol)。物质的量是表示物质所含微粒数(N)与阿伏伽德罗常数(NA)之比,即n=N/NA。它是把微观粒子与宏观可称量物质联系起来的一种物理量。

质量浓度?:单位体积混合物中某组分的质量称为该组分的质量浓度,以符号?表示。它等于混合物中组分A的质量MA与混合物的体积V之比。

物质的量浓度C:单位体积混合物中某组分的物质的量称为该组分的物质的量浓度,简称浓度。它等于混合物中组分A的物质的量,(kmol)与混合物的体积V之比

质量分数a:混合物中某组分的质量与混合物总质量之比称为该组分的质量分数,以符号a表示组分A的质量分数,它等于混合物中组分A的质量MA与混合物的总质量M之比。

多组分的传质过程中,uA、uB代表组分A、B的实际移动速度,称为绝对速度。u代表混合物的移动速度,称为主体流动速度或平均速度(以质量为基准)(若以摩尔为基准,用um表示);uA-u及uB-u代表相对于主体流动速度的移动速度,称为扩散速度。

uA=u+(uA-u) uB=u+(uB-u) uA=um+(uA-um) uB=um+(uB-um)

绝对速度=主体流动速度(平均速度)+扩散速度 2.1.2.2 传质通量【重点看三种传质通量、表示】

单位时间通过垂直于传质方向上单位面积的物质的量称为传质通量。 传质通量=传质速度×浓度 质量传质通量:m (kg/m2·s); 摩尔传质通量:N (kmol/m2·s)。

以绝对速度表示的质量通量:mA??AuA

混合物的总质量通量为m?mA?mB??AuA??BuB

混合物的总摩尔通量为N?NA?NB?CAuA?CBuB?Cum CA为A的物质的量浓度 NA为以绝对速度表示的组分A的摩尔通量,kmol/(㎡.s)

以扩散速度表示的质量通量:扩散速度与浓度的乘积为以扩散速度表示的质量通量

以主体流动速度表示的质量通量:主体流动速度与浓度的乘积为以主体流动速度表示的质量通量。

1 u?(?AuA??BuB)?

上式为质量平均速度定义式

(总摩尔通量)N=N A+NB=CAuA+CBuB=Cum um=(CAuA+CBuB)/C (2)以扩散速度表示的质量通量 传质通量=扩散速度×浓度

u A ?质量通量: j A ? ? A (u A ? u ) 摩尔通量: J A ? C A ( u m ) 总通量: j?jA?jBJ?JA?JB JB?CB(uB?um)jB??B(uB?u)(3)以主体流动速度表示的质量通量 传质通量=主体流动速度×浓度 质量通量: ? 1 ? 同理: ?Bu?aB(mA?mB)?Au??A?(?AuA??BuB)?

??? ?A?(?AuA??BuB)?aA(mA?mB) ??1 ? 同理: CBum?xB(NA?NB)摩尔通量: C A u m ?C A ? (CAuA?CBuB)?C??

C ?A(CAuA?CBuB)?xA(NA?NB)C

稳态扩散:扩散范围内各点参数不变(恒定) 质量传递的方式亦分为分子传质和对流传质

两组分扩散系统中,组分A在组分B中的扩散系数等于组分B在组分A中的扩散系数。 分子传质又称为分子扩散,它是由于分子的无规则热运动而形成的物质传递现象。

对流传质是指壁面和运动流体之间,或两个有限互溶的运动流体之间的质量传递。当流体中存在浓度差时,对流扩散亦必同时伴随分子扩散,分子扩散与对流扩散两者的共同作用称为对流质交换,对流质交换是在流体与液体或固体的两相交界面上完成的。

紊流扩散:分子扩散只有在固体、静止或层流流动的流体内才会单独发生。在湍流流体中,由于存在大大小小的漩涡运动,而引起各部位流体间的剧烈混合,在有浓度差存在的条件下,物质便朝着浓度降低的方向进行传递。这种凭借流体质点的湍流和漩涡来传递物质的现象,称为紊流扩散。

斐克定律:在浓度场不随时间而变化的稳态扩散条件下,当无整体流动时,组成二元混合物中组分A和组分B

将发生互扩散。其中组分A向组分B的扩散通量与组分A的浓度梯度成正比。jA??DABd?A dz斐克定律只适用于由于分子无规则热运动引起的扩散过程,其传递的速度即为扩散速度uA?uB。实际上,在分子扩散的同时经常伴有流体的主流运动。

在气体扩散过程中,分子扩散有两种形式,即双向扩散和单向扩散。在系统中取z1和z2两个平面,设组分A、B在平面z1处的浓度为CA1和CB1,z2处的浓度C恒定,系统的总浓度C恒定

组分A通过停滞组分B扩散时,浓度分布为对数型,在扩散距离的任一点处,pA和pB之和为系统总压力p。

在气体扩散过程中,分子扩散有两种形式,即双向扩散(反方向扩散)和单项扩散(一组分通过另一停滞组分的扩散)。

等分子反方向扩散:设由A、B两组分组成的二元混合物中,组分A、B进行反方向扩散,若二者扩散的通量相等,则成为等分子反方向扩散。 液体中的稳态扩散过程:

液体中的分子扩散速率远远低于气体中的分子扩散速率,其原因是由于液体分子之间的距离较近,扩散