别人的毕业设计基于TCS230颜色传感器的色彩识别器的设计 - 图文 联系客服

发布时间 : 星期一 文章别人的毕业设计基于TCS230颜色传感器的色彩识别器的设计 - 图文更新完毕开始阅读

徐州工程学院毕业设计(论文)

杂。

2). 色差传感器

在一些实际应用中(如分拣、 质量监控等行业),并不需要确切了解被测物的具体颜色,而只需要对两个物体的色差进行识别与判断,区别出从一种颜色到另一种颜色的变化。例如,对家用电器、汽车外壳的色彩管理,对纸浆、油漆、彩色钢板等色彩进行读取和控制,只要检测出两种颜色存在一定的色差,就能将它们区分开来。色差传感器已发展出硅双结、 光纤、有机材料等多种,由于其价格便宜,动态响应效果好,能实现在线实时测量,所以除染色等特殊行业外,工业上一般都采用色差传感器。

硅双结型颜色传感器:

硅双结型颜色传感器的结构及主要特性如图2.3所示。

图2.3 硅颜色传感器的结构原理图与特性曲线

图2.3(a)中所示的N-P-N是结深不同的两个P-N结二极管,放大作用很小。浅结二极管D1是N+- P结;深结二极管D2是P-N结,当有入射光照射时,N+,P,N每个区域及其间的势垒区中都有光子吸收,根据硅的光学性质,蓝紫光部分吸收系数大,经很短距离已吸收完毕,因此浅结光电二极管对蓝紫光的灵敏度高,而红外光的透射深度则一直达到深结区,因此深结光电二极管对红外光的灵敏度高。这就是说此结构中的不同区域对同一波长入射光具有不同的灵敏度,这一特性提供了将这种器件用于颜色识别的可能性。在不同波长的光照射下,两只光电二极管电流的比值I2/I1不同, I1是浅结二极管的短路电流, I2是深结二极管的短路电流。由于单色入射光的波长与色敏器件的短路电流比的对数存在近似的线性关系,即 ,

式中A和B值通过对预先测定数据拟合得到。所以根据短路电流比,如图 2.3(b) 所示,就可以得到入射光的波长。

这种传感器的突出优点是:短路电流比与光强无关,几乎只与入射光波长相关。但色敏器件的输出电流很小,很容易受外界的干扰,因此需要对放大电路进行屏蔽。

液晶颜色传感器:

9

徐州工程学院毕业设计(论文)

液晶颜色传感器由红外玻璃滤色片、 电子控制双折射液晶和硅 P2N 结光电二极管组成,其结构截面如图2.4 所示。

入射光红外滤波片起偏振器玻璃聚酯薄膜液晶检偏振器SiO2光电二极管P-SiN-Si图2.4 颜色传感器结构

加电压输出电压

传感器的光灵敏度可近似表示为 Tr(λ) ~ Ir(λ)I(λ)Ph(λ) ,

式中Tr(λ)为传感器的光谱灵敏度;Ir(λ)为透过红外滤色片的光强;I(λ)为透过液晶单元的光强;Ph(λ)为光电二极管检测到的光强;λ为入射光的波长。透过液晶的光强 I(λ)是加在液晶两端电压的函数,即

I (λ) = I0(λ)sin2 (2ψ) sin2 (πR/λ) , R = ( ne - n0) d – Rb

式中d为液晶层的厚度;ne为液晶层中非常光线的折射率; n0为液晶层中寻常光线的折射率; Rb为聚酯薄膜中的光延迟; R为液晶单元有效的光延迟; I0(λ)为射到液晶上的入射光强度;ψ为液晶分子轴在电极上的投影方向和起偏振器方向夹角。

其测量原理是利用红外玻璃滤色片滤掉入射光中的红外成分,改变液晶两端的电压,可以改变液晶层中的非常光折射率 ne ,从而改变光强 I(λ)。光电二极管检测到光强与存储在计算机中的颜色数据进行比较,就可知所测物体的颜色。

用该传感器检测采用同样材料编织而穿着方式不同的两件衣服,传感器输出电压的峰值有差异,这意味着这种传感器灵敏,可分辨出非常小的颜色差别。

光纤颜色传感器:

光纤是20世纪70年代为通信而发展的一种新型材料,与其它材料相比,光纤具有良好的传光性能和较宽的频带,因而被广泛地应用在通信领域中。除此之外,光纤本身还是一个敏感元件,即光在光纤中传输时,光的特性如振幅、波长(颜色)、相位、偏振态等将随检测

10

徐州工程学院毕业设计(论文)

对象变化而相应变化。光从光纤射出时,光的特性得到调制,通过对调制光的检测,便能感知外界的信息。为充分发挥光纤的这一特性,自70年代中期以来出现了许多特殊的光纤传感器,如光纤强度、相位、(波长)颜色传感器等。

光纤颜色传感器的装置如图2.5 所示。

图2.5 光纤颜色传感器的实验装置

光源发出的光由透镜耦合到光纤束,在光纤束的出射端经分光板反射到达被测物,RGB 标准滤色片同装在一个旋转盘上,当旋转盘转动时,物体反射的不同波长的光相继经过滤色片到达光探测器,从光敏管电流强弱,即可反映被测图样颜色。与传统传感器相比它具有以下优点:

(1) 利用光纤束解决了普遍存在的光能量和光源散热问题;

(2) 结构小而紧凑, 便于安装, 可实现在线检测,传感头高度密封,适于恶劣条件,具有可靠的抗干扰措施;

(3) 响应速度快,便于与计算机接口自动地判断或记数。 有机静电感应颜色传感器:

近年来,已有越来越多的研究者提出采用有机材料制成光电传感器,这种传感器成本低,应用范围广,但目前还只处于实验室研究阶段。1986年Tang曾报道了利用有机材料制成光电转换效率很高的太阳能电池,由此可见有机材料具有良好的光敏性能,所以有机材料颜色传感器被认为是很有发展前景的一种传感器。

Kudo利用两种染料制成了一种P型有机静电感应传感器(static induction t ransistor ,SIT) ,并研究了其光电特性。图2.6是 Kudo制成的有机静电感应颜色传感器的结构图。

有机静电感应颜色传感器有两个有机半导体层,分别是酞青蓝和部化青两种染料,酞青蓝和部化青膜的厚度分别为80nm和140nm,它们通过真空沉降方法覆盖在涂有锡铟氧化物的玻璃片上,酞青蓝和部化青膜之间具有P型半导体特性。有机染料膜上面覆盖一层金属金(Au)并与锡铟氧化层形成测量电极,酞青蓝和部化青膜之间有一非常薄的铝电极。当加载在铝电极上的电压增加时,测量电极之间的电流增加,反之,测量电极间的电流减少。Kudo对有机静电感应颜色传感器进行了光敏实验,光从部化青膜侧照射,在两个测量电极

11

徐州工程学院毕业设计(论文)

上加载2.5V的输入电压,电极间的测量电流IDS则随着加载在铝电极上的电压(VG)变化而变化的,测量结果如图2.7所示。

图2.6 有机静电感应传感器结构

图2.7 有机静电感应传感器的光敏特性

从图2.7中还可以看出,IDS 在600nm时有一峰值,这说明酞青蓝层对600nm光的吸收性非常强。

从 Kudo的实验结果可知,有机材料的光敏特性不仅与电压VG有关,还与有机材料本身有关,所以利用有机材料完全有希望发展出一种新型的价格低廉且性能优良的颜色传感器。

2.4本章小结

本章对色彩识别与各种颜色传感器技术进行了深入的介绍,主要包括色彩识别的一般算法(白平衡算法),以及色彩识别在现实社会中的一些具体应用,另外还介绍了几种主要的传感器技术,为后面的色彩识别系统的设计做好了准备。

12