基于LABVIEW的圆形图像识别与实时跟踪系统设计 联系客服

发布时间 : 星期四 文章基于LABVIEW的圆形图像识别与实时跟踪系统设计更新完毕开始阅读

常熟理工学院毕业设计(论文)

1.2课题的研究背景

1.2.1课题的背景和意义

随着时代的发展和社会的进步,人们对智能化的要求越来越高,又由于计算机技术和模式识别等相关技术的飞速发展,使运用当今先进技术来研制适用于众多领域的图像控制系统成为可能和一种必然的趋势。传统的图像识别系统都是由大规模或超大规模集成电路来完成,主要由图形工作站或者微计算机来实现设备的驱动和图像采集,这就使图像采集依赖于较大型设备,速度较慢,实时性较差,作为小范围内使用价格比较昂贵。新兴的以LABVIEW为基础的图像处理技术的出现,以其高速、准确的性能为图像处理和模式识别带来了新的途径并且实现图像识别价格比较低廉。

近几年来,随着计算机技术及互联网的发展和普及,数字化成为社会发展的一个必然趋势,数字图像处理技术在人们生产、生活中的应用越来越广泛。拍照、监控、谷歌地图、天气预报??随处可见数字图像处理技术应用的身影。在图像的采集和分类工作中,基于LABVIEW 平台设计出的图像识别系统,可将编写的系统程序用数据流展示在控制面板上,便于用户读取和修改程序,互动性强且易于升级。

本文基于LABVIEW 平台设计了关于“圆形图像识别与实时跟踪”的VI系统,从而实现了对采集图像的处理和判断功能,为解决图像识别问题提供了一条选择途径。实时跟踪系统的设计是基于对单个图片的基础上,不仅可以识别出圆形图像,还可以通过系列循环处理,绘制出图像的运动轨迹,从而为判别圆形物体的运动提供了有效而又精确的方法。 1.2.2图像处理概述

图像就是用各种观测系统以不同形式和手段观测客观世界而获得的,可以直接或间接作用于人眼而产生视知觉的实体。科学研究和统计表明,人类从外界获得的信息约有75%来自于视觉系统,也就是说,人类大部分信息都是从图像中获得的。

图像处理是人类视觉延伸的重要手段,可以使人们看到任意波长上所测得的图像。例如,借助伽玛相机、X光,人们可以看到红外和超声图像;借助CT可以看到物体内部的断层图像;借助相应工具可看到红外和超声图像。1964年,美国在太空探索中拍回了大量月球照片,但是由于种种环境因素的影响,这些照片是非常不清晰的,为此,美国喷射推进实验室(JPL)使用计算机对图像进行处理,使照片中的重要信息得以清晰再现。这是这门技术发展的重要里程碑。此后,图像处理技术在空间研究方面得到广泛的应用。

在研究图像时,首先要对获得的图像信息进行预处理(前处理)以滤去干扰、噪声,作集合、彩色校正等,这样可提高信噪比;有时由于信息微弱,无法辨识,还得进行增强

3

常熟理工学院毕业设计(论文)

处理。增强的作用,在于提供一个满足一定要求的图像,或对图像进行分割,也就是进行定位和分离,以分出不同的物体。为了给观察者以清晰的图像,还要对图像进行改善,即进行原处理,它是把已经退化了的图像加以重建或恢复的过程,以使改进图像的保真度。在实际处理中,由于图像信息量非常大,在存储及发送时,还要对图像信息进行压缩。

上述工作必须用计算机进行,因而要进行编码等工作。编码的作用,是用最少数量的编码位(亦称比特),表示单色和彩色图像,以便更有效的传输和存储。

以上所述都属于图像处理的范畴。对于一个图像处理系统来说,可以将流程分为三个阶段:首先是图像处理阶段,第二是图像分析阶段,第三是图像理解阶段。图像处理阶段主要是在像素级上进行处理,图像的几何校正,图像的灰度处理,图像噪声滤除的平滑处理,目标物体边界的锐化处理等,图像分析阶段主要对图像里感兴趣的目标进行检测、分割、特征提取和测量,分析的结果能为用户提供描述图像目标特点和性质的数据,把原来以像素描述的图像转变成比较简洁的非图像方式的描述。图像理解阶段主要通过对图像里各目标的性质和它们之间相互关系的研究,对描述抽象出来的符号进行运算,了解把握图像内容并解释原来的客观场景,提供客观世界的信息,指导和规划行为。

图像处理技术的发展大致经历了初创期、发展期、普及期和实用化期4个阶段。初创期开始于20世纪60年代,当时的图像采用像素型光栅进行描述显示,大多采用中、大型机对其进行处理。在这一时期,由于图像存储成本高,处理设备造价高,因而其应用面很窄。20世纪70年代进入了发展期,开始大量采用中、小型机进行处理,图像处理也逐渐改用光栅扫描显示方式,特别是出现了CT和卫星遥感图像,对图像处理技术的发展起到了很好的促进作用。到了20世纪80年代,图像处理技术进入了普及期,此时二等微机已经能够担当起图形图像处理的任务。VLSI的出现更使得处理速度大大提高,其造价也进一步降低,极大的促进了图形图像系统的普及和应用。20世纪90年代是图像处理技术的实用化时期,图像处理的信息量巨大,对处理速度的要求较高。

目前,图像处理面临的主要问题有:第一,处理信息量很大。如一幅256×256 低分辨率黑白图像,要求约64kbit 的数据量;对高分辨率彩色512×512 图像,则要求768kbit 数据量;如果要处理30 帧/秒的电视图像序列,则每秒要求500kbit~22.5Mbit 数据量。因此对计算机的计算速度、存储容量等要求较高。第二,占用频带较宽。与语言信息相比,占用的频带要大几个数量级。如电视图像的带宽约5.6MHz,而语音带宽仅为4kHz 左右。这对频带压缩技术提出了更高的要求。第三,个像素相关性大。数字图像中各个像素是不独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。因此,图像处

4

常熟理工学院毕业设计(论文)

理中信息压缩的潜力很大。第四,无法复现三位景物的全部几何信息。由于图像是三维景物的二维投影,一幅图象本身不具备复现三维景物的全部几何信息的能力,很显然三维景物背后部分信息在二维图像画面上是反映不出来的。因此,要分析和理解三维景物必须作合适的假定或附加新的测量,这也是人工智能中正在致力解决的知识工程问题。第五,受人的因素影响较大。由于人的视觉系统很复杂,收环境、视觉性能、人的情绪爱好以及知识状况影响很大,作为图像质量的评价还有待进一步深入的研究。 1.2.3图像处理技术的应用

图像处理技术有着广泛的应用,其中最典型的应用有: (1)遥感技术中的应用

遥感图像处理的用处已经越来越大,并且其效率和分辨率也越来越高。它被广泛地应用于土地测绘、资源调查、气象监测、环境污染监督、农作物估产和军事侦察等领域。目前遥感技术已经比较成熟,但是还必须解决其数据量庞大、处理速度慢的特点。

(2)医学应用

图像处理在医学上有着广泛的应用。其中最突出的临床应用就是超声、核磁共振、γ相机和CT等技术。在医学领域利用图像处理技术可以实现对疾病的直观诊断和无痛、安全方便的诊断和治疗,受到了广大患者的欢迎。

(3)安全领域

利用图像处理的模式识别等技术,可以利用在监控、指纹档案管理等安全领域中。目前有清华大学工程物理系开发研制的大型集装箱检测系统,就是利用图像处理技术来实现全自动集装箱检测,从而加快了海关的工作效率,为打击走私立下汗马功劳。

(4)工业生产

产品的无损检测也是图像处理技术的一项广泛应用。

总之,图像处理技术的应用是相当广泛的它在国家安全、经济发展、日常生活中充当着越来越重要的角色,对国计民生有着不可忽略的作用。

1.3课题研究的主要任务

1.3.1论文的程序语言

本课题的主要目的是利用计算机图像处理技术,结合先进的虚拟仪器(图像化编程软件LABVIEW)技术,开发出一种能够自动识别圆形图像的技术,并且可以对该圆形图像进行实时跟踪。基于LABVIEW的图像工程能够充分利用G语言编程简单、功能完善、应用灵活等突出特点,使得图像工程任务的实现变得更加简单。

5

常熟理工学院毕业设计(论文)

1.3.2系统总体设计思路

本系统的输入图像为32 位RGB 彩色图像,在图像输入之后,首先通过灰度图像转换,把彩色图像转换为灰度图,接着对灰度图进行二值化处理,经过二值化处理的图像有比较多的噪点和空洞,需要再对二值图像进行腐蚀和膨胀。完成数学形态学处理之后,图像的几何特性就比较明显了,通过特征提取,把核心的几何特征提取出来,进行分析和比较就可以识别出圆形图像。接着,结合LABVIEW中的for循环语句,利用程序将粒子分析模块的处理数据提取出来,送入波形图进行轨迹显示,就可以对识别出的图像进行跟踪。

系统的设计流程图如下所示:

图1.1系统设计流程图

1.4论文的安排

本文共分为6章。

第一章,从虚拟仪器的概述入手,介绍了本次课题的背景和意义,还追溯了图像处理的发展历程,图像处理的基本思想和现今的发展情况。除此之外,本章还阐述了系统设计的总体思想。

第二章,主要介绍了在虚拟仪器方面应用比较普遍的软件LABVIEW应用程序的构成,主要模块,编程思想,和它独特的数据流等。

第三章,本章主要介绍了图像预处理技术。主要包括图像的灰度化处理、图像的增强技术、图像二值化还有图像分割技术。

第四章,本章介绍了图像的特征提取和识别技术。在边缘图像的基础上,需要通过平滑、形态学等处理去除噪声点、毛刺、空洞等不需要的部分,再通过细化、边缘连接和跟踪等方法获得物体的轮廓边界。

第五章,本章在对单个图像的处理基础上,通过编程设计实现了实时跟踪系统的设计。 第六章,本章主要就是对论文进行了总结还有课题的展望。

6