(通风空调部分)第二章 湿空气的状态参数与处理 联系客服

发布时间 : 星期三 文章(通风空调部分)第二章 湿空气的状态参数与处理更新完毕开始阅读

加时,含湿量d也随之增大,空气的潮湿程度增大。所以,湿空气中的水蒸气分压力pv与同温度下饱和水蒸气分压力pv,b的接近程度就反映了空气的潮湿程度。相对湿度??0时,是干空气,

?=100%时为饱和湿空气。

对于?有两点需要注意:

(1)?和d的区别:?表示空气接近饱和的程度,也就是空气在一定温度下吸收水分的能力,但并不反映空气中水蒸气含量的多少;而d可表示空气中水蒸气的含量,但却无法直观地反映出空气的潮湿程度和吸收水分的能力。

例如有温度为 t=10℃,d=7.63g/kg(a)和t=30℃,d=15g/kg(a)两种状态的空气。从表面上看,似乎第一种状态的空气要干燥些。其实却并非如此。从附录A-1中可知,第一种状态的空气已是饱和空气,而第二种状态的空气距离饱和状态的含湿量db=27.2g/kg(a)还很远。这时,?=55%左右,还有很大的吸湿能力。

(2)饱和水蒸气分压力是温度的单值函数,即:pv,b?f(t)由工程热力学的知识我们知道,水在定压汽化过程中,在如图2-2 b)所示的湿蒸汽区里,温度和压力都不变,饱和压力和饱和温度维持ps?f(t)的关系。而饱和水蒸气状态点是在湿蒸汽区的饱和线上,因而服从这种关系。根据这个特点,湿空气的饱和水蒸气分压力pv,b =ps?f(t),即可从有关的水蒸气图表中查取。 图2-2 水蒸气的压力—容积图 (五)焓

由热力学理论可以知道,在定压过程中,空气变化时初、终状态的焓差,就反映了状态变化过程中热量的变化。因为在空调工程中,湿空气的状态变化过程可以近似看做是定压过程。所以,湿空气状态变化前后的热量变化就可以用它们的焓差来计算。

湿空气的焓也是以 1kg干空气作为计算基础。即 1kg干空气的焓加dkg水蒸气的焓的总和,称为(1+d)kg湿空气的焓。如果取 0℃的干空气和0℃的水的焓为零,则湿空气的焓可表示为

h?ha?dhv

式中 h——含有1kg干空气的湿空气所具有的焓[kJ/kg(a)];

57

,即 ha——1kg干空气的焓[kJ/kg(a)]

ha?Cp,at?1.01t;

hv——1kg 水蒸气的焓(kJ/kg),即

hv?2500?Cp,vt?2500?1.84t 式中 2500——0℃时水的汽化潜热(kJ/kg);

Cp,a——干空气的定压比热容,为1.01kJ/(kg·℃); Cp,v——水蒸气的定压比热容,为1.84kJ/(kg·℃)

把ha和hv 的表达式代入湿空气焓的计算式中整理可得:

0 (2-8) h?(1.01?1.84d)t?250d

上式中(1.01?1.84d)t是随温度而变化的量,通常称为“显热”。2500d是0℃时dkg水的汽化潜热,仅与含湿量d有关,称为“潜热”。由于2500比(1.01?1.84d)大得多,因而,当温度升高时,若含湿量有所下降,则综合后的结果有可能是湿空气的焓不一定会增加。

(六)露点温度和湿球温度

根据空气温度形成的过程和用途不同可将空气的温度区分为干球温度、湿球温度和露点温度。 干球温度是指干球温度表所指示的温度。一般情况下指干球温度,用t表示。

湿球温度是指湿球温度表所指示的温度。用ts表示。湿球温度的形成过程在实际工程中可看成等焓过程。

对于一定状态的空气,干、湿球温度的差值就反映了空气的干湿程度,关系如下:

pv?p?v,b?A(t?ts)B

(65?6.75/?) 其中 A?0.00001式中 p?v,b——湿球温度下饱和水蒸气分压力(Pa); ?——空气流过湿球的速度(m/s),?≥2.5~4m/s。

B——大气压力(Pa)。

露点温度是指在大气压力一定、某含湿量下的未饱和空气因冷却达到饱和状态时的温度。用td表示。在冬天的玻璃窗上或夏季的自来水管上常常可以看到有凝结水或露水存在。这一现象可以用露

58

点温度形成来解释。在空调工程中的很多除湿过程,就是利用结露规律进行的。

(七)密度和比热容

单位容积的气体所具有的质量称为密度,即

??m/V (2-9) 式中 ?——气体的密度(kg/m3); m——气体的质量(kg); V——气体所占有的体积(m3)。

单位质量的气体所具有的容积称为比容。比容和密度实际上是两个相关的参数。两者呈倒数关系,即

v?V/m?1/? (2-10) 式中 v—气体的比热容(m3/kg)。

由于湿空气是由干空气和水蒸气组成的混合物,两者具有相同的温度并占有相同的容积,即:

m?ma?mv

上式各项同除以容积V,则湿空气的密度等于干空气的密度加水蒸气的密度,即

???a??v

将理想气体状态方程代入上式有

??B?pvppap?v ?v?287T461TRaTRvTpB?0.00349?0.00134v

TT?pv,bB?0.00349?0.00134 (2-11)

TT从式(2-11)可知:在大气压力和温度相同的情况下,湿空气的密度比干空气小,即湿空气比干空气轻。

第二节 湿空气的焓湿图

在工程计算中,用公式计算和用查表方法来确定空气状态和参数是比较繁琐的,而且,对空气

59

的状态变化过程的分析也缺乏直观的感性认识。因此,为了便于工程应用,通常把一定大气压力下,各种参数之间的相互关系作成线算图来进行计算。根据所取坐标系的不同,线算图也有好几种。国内常用的是焓湿图,简称h?d图,见附录A-2。

h?d图是取两个独立参数h和d作坐标轴。另一个独立状态参数B取为定值。为了使各种参

数在坐标图上的反映清晰明了,两坐标轴之间的夹角取为135度。如图2-3所示。

图中d为横坐标,h为纵坐标。与h轴平行的各条线是等焓线。与d轴平行的直线是等含湿量线。此外,图上还作出了以下几条线。

一、等温线

图2-3 湿空气的焓湿图 t?(2500?1.84t)d绘制的。当t=const时,上式是一直线方程。其等温线是根据公式h?1.01中1.01t是截距,(2500?1.84t)是斜率。当温度取某一定值时,根据过两点可作一条直线的原理,即可在h?d图上作出该条等温线。

下面简要说明等温线的绘制过程。

如绘制t=0℃的等温线。t=0℃时,任取d1 =0和d2?dx,则可计算出h1=0和h2?2500由(0,0),和(2500dx,dx)dx,在h?d图上可定出两个状态点O和A,则OA直线就是t=0℃的等温线,见图2-4所示。

如需绘制t=10℃的等温线,则当t=10℃时,取d1 = 0,可计算出 h1 =10.1,取d2=dx,h2=10.1+2518.4dx,因为(1.01,0)在纵轴上,即可由O点向上截取 OB段(截距等于10.1)得到 B点,又根据(10.1+2518.4dx,dx)可在h-d图上定出状态点C,则 BC直线就是t=10℃的等温线。

当t取1℃,2℃,3℃,??等一系列的常数时,用上面同样的方法可绘出一簇不同的等温线。因为等温线的斜率(2500+1.84t)随着t值的不同有微小变化,所以各条等温线是不平行的。但由于1.84t的数值比2500小的多,t值变化对等温线斜率的影响很小,因此,各条等温线可近似看作是平行的。

(二)等相对湿度线

等相对湿度线是根据公式d?0.00349?0.00134 图2-4 等温线的绘制 BT?pv,bT绘制。从公式可知,含湿量是大气压

60