7地质雷达记录的波相识别 - 图文 联系客服

发布时间 : 星期四 文章7地质雷达记录的波相识别 - 图文更新完毕开始阅读

7地质雷达记录的波相识别

地质雷达反射记录的波形比地震波复杂的多,一方面是由于地质雷达分辨率高记录的信号丰富,另一方面是由于电磁波的干扰因素多,此外还由于雷达发射的子波比较复杂,并非简单的脉冲。因而雷达资料的处理与解释是一项复杂细致的工作。特别是各种地层、目标体、干扰波的识别需要坚实的理论基础和丰富的实践经验。

7.1 地质雷达的波组特征

雷达天线发射的是子波而不是单脉冲,子波由几个震荡波形组成,占有一定的时间宽度,反射

与折射波依然保持有原来子波的特点,只是幅值上有所变化。这里将雷达子波的周期、持续时间长度和衰减比三个参量作为子波的波阻特征。子波的频率成分与天线的主频相近,持续一个半到两个周期,后续振相略有衰减。例如对于100MHz天线的子波,持续时间可到15-20ns,对于1GHz的天线,持续时间约2ns。子波的波形的确定对于后期处理是非常重要的,它是小波处理的基础。有很多方法可以获得各种频率天线的子波,最简单的方法是利用金属板反射。将一块较大的金属板放置于地面上,发射与接受天线与金属板平行,相距为3个周期的时程,进行数据采集,即可获得子波记录。不同类型的雷达、不同型号的天线,雷达子波的形状是不同的。天线与介质的距离、介质的电导特性对子波的形态和特点也有一定的影响,应根据现场工作条件从记录中分离子波。从下边的记录中也可以辨认出子波的特征。表面反射波、内界面反射波都是近联各州其的衰减波形。对其进行分析可以得到子波的波组特征

7.2 地质与工程介质结构及反射特征

雷达的探测对象通常是多界面结构,如各类地层、岩性,松散层、风化层等都是多层结构。隧道中的围岩、初衬、二衬等,也是多界面结构。雷达波向介质内传播时,被称为下行波,经反射回表面的波称为上形波。下行波每遇到一个界面就发生一次反射和折射,入射波能量即被分成两部分,一部分经折射继续向下传播,另一部分经反射掉头向上,变成上行波。反射与折射能量的分配与反

射、折射系数的平方成正比。上一界面的折射波就是下一界面的入射波,因而下行波的能量不断减少,同时每一界面都在产生反射的上行波。同理,每一界面反射形成的上行波,也会遇到介质的界面,形成二次的反射与折射。介质中每一上行波和下行波都是独立运行的,当遇到界面时都会按照Snell定律,进行折射和反射。因而多层介质中,多次反射与折射波是无尽的,只是反射、折射的经历越多能量越小。

上行波与下行波传播时,独立震相的能量逐渐减少,除由于界面反射与折射造成能量的分散、使每一独立波相的振幅减小之外,还由于介质的吸收,也就是传导电流引起的损耗。这种介质吸收

αx

引起的振幅变化是指数形式的,呈e-形式,其中x代表传播路径的累计长度,α为衰减系数,在前文中已有交待。上图是雷达波传播的示意。

在雷达记录中记录的都是不同路径上行到表面的反射波,内容十分丰富,但实际上并非所有的反射震相都能识别出来,主要识别的是层面的一次反射真相。一方面是由于能量比太小,超出了仪器的动态范围,另一方面多次反射干扰大、层面连续性差。在一些特殊的观测条件下,界面反差大,浅部结构简单时,二次波有时也非常清楚,处理中还要采取特殊措施进行压制。

接收到的反射信号f(t)是发射的雷达子波与介质折射系数、反射系数和介质损耗的褶积,即各层反射信号的叠加。每层反射信号到达时间不同,其幅值是路径介质损耗、下行折射系数、上行折射系数、折返层的反射系数和几何衰减的乘积。其数学表达式为:

F(t)=ΣAO·e

-Σ2αh

·Ri ·e-i

ω(t-∑2h/v)

· Πгj·Πгk/∑2h

ixis

-Σ2αhω(∑

式中:AO 子波初始幅值;e传播路径衰减; Ri折返层反射系数;e-it-2h/v)反射波对应相位;Πixis

гj下行折射系数的联乘;Πгk上行折射系数的联乘。

雷达下行上行波传播示意图

雷达多层反射记录

介质结构与反射特性示意