小学5-6年级杯赛奥数详解 联系客服

发布时间 : 星期六 文章小学5-6年级杯赛奥数详解更新完毕开始阅读

能整除3165493,或3165493不能被3整除。)

【能否被7整除】一个数能否被7整除,只要把这个数的末位数字截去,再从余下的数中,减去这个末位数字的2 倍,如果这时能看出所得的差能被7整除,则原来的数就能被7整除,否则就不能被7整除;若是仍看不出来,就要继续上述过程,直到能清楚作出判断为止。例如,判断133能否被7整除:

因为差数7能被7整除,所以7|133。 这是什么原因呢?请看下面的算式: 133×2=(13×10+3)×2 =13×20+3×2 =13×(21-1)+3×2 =13×21-13+3×2 =13×7×3-(13-3×2)

显然,13×7×3中有约数7,它能被7整除,故只要检验后面的(13-3×2)能否被7整除就可以了。(原理可见第一部分的整除性定理)

如果要判断的数的位数很多,那么,将这种做法一直进行下去就是。例如,判断62433能否被7整除:

∵7|42,∴7|62433

这样的判定方法可称作“割尾法”。一个数能否被11、13、17和19整除,也可用割尾法去判断。 【能否被11整除】判断一个数能否被11整除,可以采用割尾法、奇偶位差法及分节求和法。

(1)割尾法。一个数能否被11整除,只要把它的末尾数字截去,从余下的数里减去这个末位数,看所得的差能否被11整除。差能整除的,原来的数就能整除;差不能整除的,原来的数就不能整除。如一次所得的差还看不出能否被11整除,就继续上述过程,直到能作出判断为止。例如,判断2629能否被11整除:

因为11|22,所以11|2629。 之所以能这么判断,原因在于 2629=2620+9 =262×10+9

=262×(11-1)+9 =262×11-262+9 =262×11-(262-9)

在262×11中有因数11,所以只要看(262-9)的差能否被11整除,就可判断原来的2629能否被11整除。

而(262-9)的差是253, 253=250+3 =25×10+3

=25×(11-1)+3 =25×11-25+3

29

=25×11-(25-3)

同样,只要看(25-3)能否被11整除,就会知道253能否被11整除。进而便可知2629能否被11整除了。 (2)奇偶位差法。判断一个数能否被11整除,可先分别求出此数的奇位数字之和及偶位数字之和,再求这两个和的差数,若这个差能被11整除,则原来的那个数就能被11整除;否则,原来的数就不能被11整除。例如,判断823724能否被11整除:

∵它的奇位数字之和为4+7+2=13(数位数,从右边个位开始往左数), 它的偶位数字的和为2+3+8=13

两个和的差数是13-13=0(两数不等时用大数减小数) 而 11|0 ∴11|823724

之所以能这样判断,是因为 823,724

=8×100,000+2×10,000+3×1,000+7×100+2×10+4

=8×(100,001-1)+2×(9,999+1)+3×(1,001-1)+7×(99+1)+2×(11-1)+4 =8×100,001+2×9,999+3×1,001+7×99+2×11+[(2+7+4)-(8+3+2)]

显然,在前几项中,因数100,001、9,999、1,001、99、11都是11的倍数,故只需检验[(2+7+4)-(8+3+2)]

能否被11整除,就可以作出判断了。

(3)分节求和法。把一个自然数从右向左每两位截为一节,然后把这些节加起来。若所得的和能被11整除,那么这个数就能被11整除;否则,这个数就不能被11整除。在这一情况下,如果仍不能作出判断,那就继续上述过程,直到清楚地作出判断为止。例如,判断762421能否被11整除:

这一判断方法的理由,可见下面的算式: 762421=76×10000+24×100+21

=76×(9999+1)+24×(99+1)+21 =76×9999+76+24×99+24+21 =76×9999+24×99+(76+24+21)

在前两项中,因数9999和9都能被11整除,所以只需要检验后面的(76+24+21)能否被11整除了。能整除的原数就能被11整除;不能整除的原数,就不能被11整除。

【能否被13整除】一个数能否被13整除,可采用“割尾法”判断:截去末位数字,余下的数加上末位数的4倍。所得的和是13的倍数,则这个数就能被13整除,否则,就不能被13整除。要是割尾一次仍不能作出判断,那就继续割尾,直到能作出判断为止。例如,判断364能否被13整除:

∵13|52,∴13|364。

这一判断的理由,可由下式看出: 364×4=(36×10+4)×4 =36×40+4×4

=36×(39+1)+4×4 =36×39+36+4×4

=36×13×3+(36+4×4)

前面的36×13×3中,有约数13,所以作出判断时,只需要检验(36+4×4)是否能被13整除了。 【能否被17整除】一个数能否被17整除,同样可用“割尾法”作巧妙而快速地判断。不过,具体地做法有所不同。例如,判断731能否被17整除,判断方法如下:

∵17|68,∴17|731。

这样做的理由,可见下面的算式推导: 731×5=(73×10+1)×5

30

=73×50+1×5

=73×(51-1)+1×5 =73×51-73+1×5

=73×17×3-(73-1×5)

由于前面的73×17×3有约数17,故只需检验(73-1×5)能否被17整除,就知道“731×5”能否被17整除。知道“731×5”能否被17整除,也就是知道731能否被17整除了(根据整除性定理)。

若是“割尾”一次仍不能作出判断,那就依法继续割尾下去,直到能作出判断为止。例如,判断279191能否被17整除, 可以作如下割尾判断:

∵17|17,∴17|279191

【能否被19整除】一个数能否被19整除,也是可用“割尾法”作巧妙判断的,具体做法如 判断475能否被19整除:

∵19|57,∴19|475。

其中的道理,可见下面的算式推导: 475×2=(47×10+5)×2 =47×20+5×2

=47×(19+1)+5×2 =47×19+(47+5×2)

最后算式中的47×19有约数19,故只需要检验(47+5×2)能否被19整除,就知道“475×2”及“475”能否被19整除了。

如果一次“割尾”仍不能作出判断,那就继续“割尾”下去,直至能作出判断为止。例如,判断14785能否被19整除:

排列与组合

【有条件排列组合】

例1 用0、1、2、3、4、5、6、7、8、9这十个数字能够组成______个没有重复数字的三位数。 (哈尔滨市第七届小学数学竞赛试题)

讲析:用这十个数字排列成一个不重复数字的三位数时,百位上不能为0,故共有9种不同的取法。 因为百位上已取走一个数字,所以十位上只剩下9个数字了,故十位上有9种取法。 同理,百位上和个位上各取走一个数字,所以还剩下8个数字,供个位上取。 所以,组成没有重复数字的三位数共有

31

9×9×8=648(个)。

例2 甲、乙、丙、丁四个同学排成一排,从左到右数,如果甲不排在第一个位置上,乙不排在第二个位置上,丙不排在第三个位置上,丁不排在第四个位置上,那么不同的排法共有______种。 (1994年全国小学数学奥林匹克初赛试题)

讲析:因每个人都不排在原来的位置上,所以,当乙排在第一位时,其他几人的排法共有3种;同理,当丙、丁排在第一位时,其他几人的排法也各有3种。 因此,一共有9种排法。

例3 有一种用六位数表示日期的方法,如890817表示1989年8月17日,也就是从左到右第一、二位数表示年,第三、四位数表示月,第五、六位数表示日。如果用这种方法表示1991年的日期,那么全年中六个数字都不相同的日期共有______天。

(1991年全国小学数学奥林匹克决赛试题)

讲析:第一、二位数字显然只能取9和1,于是第三位只能取0。

第五位数字只能取0、1、2或3,而0和1已取走,当取3时,第六位上只能取0和1,显然不行。因此,第五位上只能取2。

于是,第四位上只能取3、4、5、6、7、8;第六位上也只能取3、4、5、6、7、8,且第四、六位上数字不能取同。

所以,一共有 6×5=30(种)。 【环形排列】

例1 编号为1、2、3、4的四把椅子,摆成一个圆圈。现有甲、乙、丙、丁四人去坐,规定甲、乙两人必须坐在相邻座位上,一共有多少种坐法? (长沙市奥林匹克代表队集训试题)

讲析:如图5.87,四把椅子排成一个圆圈。

当甲坐在①号位时,乙只能坐在②或④

号位上,则共有4种排法;同理,当甲分别坐在②、③、④号位上时,各有4种排法。 所以,一共有16种排列法。

例2 从1至9这九个数字中挑出六个不同的数填在图5.88的六个圆圈中,使任意相邻两个圆圈内数字之和都是质数,那么最多能找出______种不同的挑法来。(挑出的数字相同,而排列次序不同的都只算一种)

(北京市第九届“迎春杯”小学数学竞赛试题)

讲析:在1至9这九个自然数中,奇数有1、3、5、7、9五个,偶数有2、4、6、8四个。要使排列之后,每相邻两个数字之和为质数,则必须奇数与偶数间隔排列,也就是每次取3个奇数和3个偶数。 从五个奇数中,取3个数共有10种方法; 从四个偶数中,取3个数共有4种方法。

但并不是每一种3个奇数和3个偶数都可以排成符合要求的排列。经检验,共有26种排法。

35、逻辑思路

“逻辑思路”,主要是指遵循逻辑的四大基本规律来分析推理的思路。

【同一律思路】同一律的形式是:“甲是甲”,或“如果甲,那么甲”。它的基本内容是,在同一思维过程中,同一个概念或同一个思想对象,必须保持前后一致性,亦即保持确定性。这是逻辑推理的一条重要思维规律。运用这一规律来解题,我们把它叫同一律思路。

例1 某公安人员需查清甲、乙、丙三人谁先进办公室,三人口供如下: 甲:丙第二个进去,乙第三个进去。 乙:甲第三个进去,丙第一个进去。

32