RFID复习题1(参考) 联系客服

发布时间 : 星期一 文章RFID复习题1(参考)更新完毕开始阅读

RFID复习

RFID系统概论

一、RFID——Radio Frequency Identification

RFID利用射频信号通过空间耦合实现无接触信息传递达到识别目标的技术。系统通常读写器、电子标签及应用软件组成。可用于物流,电子票证,动物或资产追踪管理,供应冷链,高速公路智能收费等领域。

二、工作原理:读写器控制射频模块发出射频信号,电子标签主动发送(有源标签)或者凭借感应电流所获得的能量(无源标签)发送出芯片中的存储信息,接收标签的应答,读写器对标签的传递过来的信息进行解码,并传输到主机进行数据处理。 1)在低频段(100MHz以下)基于电感耦合(近距)

2)在高频段(400MHz以上)基于电磁反向散射耦合(雷达,远距)

三、按工作频段分类: 工作频段 通信标准协议 优点 缺点 标准CMOS工艺 通信速度低 低频(LF) ISO18000-2 技术简单可靠成熟 识别距离短(<10cm) <125KHz ISO11785 无频率限制 天线尺寸大 ISO18000-3 与标准CMOS工艺兼容 距离不够远(<75cm) 高频(HF) ISO14443 技术可靠成熟 天线尺寸大, 13.56MHz ISO15693 在交通智能卡等领域应用广泛 受金属材料等影响大 超高频(UHF) 长距离定向识别 各国有不同的频段管制, 840-845MHzISO18000-6 天线尺寸小,可绕射,无需可视受金属和液体等材料影响较大 和 ISO18000-7 距离, 对人体有伤害,限制发射功率 920-925 MHz 发展潜力巨大 除了UHF特性外 ISM频段共享产品多 微波 ISO18000-4 更高的带宽和通信速率 易受干扰,技术相对复杂 2.45~5.8GHz DSRC 更长识别距离,更小的天线尺寸 对人体有伤害,限制发射功率

RFID的工作原理

一、RFID工作原理

? 阅读器通过天线向周围空间发送一定频率的射频信号; ? 标签一旦进入阅读器天线的作用区域将产生感应电流,获得能量被激活;激活标签将自身信息编码后经天线发送出去;

? 阅读器接收该信息,经过解码后必要时送至后台网络;

? 后台网络中主机鉴定标签身份的合法性,只对合法标签进行相关处理,通过向前端发送指令信号控制阅读器对标签的读写操作;

二、RFID的三种工作模型

5

1)以能量供给为基础的工作模型

无源电子标签:当标签进入阅读器的工作范围内以后,标签收到阅读器发送的信号,产生感应电

流从而激活内部的电路,内部整流电路将射频能量转化为电能,将该能量存储在标签内部的大电容里,进而为其正常工作提供了所需的能量。

半有源电子标签:阅读器发送的射频信号只用来激活标签。

有源电子标签:只要标签处于阅读器的工作范围以内,就可以主动向阅读器发送信号。

2)以时序方式完成数据传输的工作模型

阅读器先发言模式(RTF, Reader Talk First)

如果阅读器不主动激活电子标签的话,电子标签不会向阅读器发送信号,通常用于无源标签。 电子标签先发言模式(TTF, Tag Talk First)

就算阅读器不激活标签,标签也会主动向阅读器发送信号

3)以数据传输为目的的工作模型

上行链路传输

电子标签向阅读器的数据传输。 下行链路传输

阅读器向电子标签的数据传输。

离线写入:无论是哪一类电子标签都有离线写入这种情况。所有电子标签在出厂之前都

要由生产厂家将标签的ID号(EPC)固化写入,该ID号是标签的身份标识,是唯一的,一旦写入以后将永远不能修改。

在线写入:拓展高级功能,可写标签,结构复杂,成本高。

三、 RFID防碰撞理论

1)碰撞的种类

阅读器碰撞:多个阅读器同时与一个标签通信,致使标签无法区分阅读器的信号。

电子标签碰撞:多个标签同时响应阅读器的命令而发送信息,使阅读器无法识别标签。

2)传统解决方案

1)空分多址(SDMA) 2)频分多址(FDMA) 3)码分多址(CDMA) 4)时分多址(TDMA)

应用最广泛,又可以分为基于概率的ALOHA算法(饿死)和确定的二进制算法两

种。

3)ALOHA反碰撞算法

1、纯ALOHA算法

? 主要采用标签先发言(Tag-Talk-First)的方式,即电子标签一旦进入阅读器的工作范围获得

能量后,便向阅读器主动发送自身的序列号。

? 在某个电子标签向阅读器发送数据的过程中,如果有其它电子标签也同时向该阅读器发送数

据,此时阅读器接收到的信号就会产生重叠,导致阅读器无法正确识别和读取数据。

? 阅读器通过检测并判断接收到的信号是否发生碰撞,一旦发生碰撞,阅读器则向标签发送指

令使电子标签停止数据的传送,电子标签接到阅读器的指令后,便随机的延迟一段时间再重新发送数据。

在纯ALOHA算法中,假设电子标签在t时刻向阅读器发送数据,与阅读器的通信时间为

To,则碰撞时间为2T0。G为数据包交换量,S为吞吐率。

6

2、Slotted ALOHA算法:

? 为提高RFID系统的吞吐率,可以把时间划分为多段等长的时隙,时隙的长度由系统时

钟确定,并且规定电子标签只能在每个时隙的开始时才能向阅读器发送数据帧,这就是Slotted ALOHA算法;

? 根据上述规定可得,数据帧要么成功发送,要么完全碰撞,避免了纯ALOHA算法中部

分碰撞的发生,使碰撞周期变为To;

? 它是纯ALOHA算法的简单改进,也属于时分多址法,它的缺点是需要同步时钟的控制;

3、Frame Slotted ALOHA算法(FSA):

? ALOHA 的另一种改进算法是帧时隙 ALOHA 算法(FSA)。

? 它是在Slotted ALOHA 算法的基础上把 N 个相同的时隙组成一帧,且在整个电子标签

识别过程中,帧的大小是固定的,帧中的每个时隙足够一个电子标签与阅读器进行完通信,该算法也称为固定帧时隙 ALOHA 算法。

? 该算法比较适用于传输信息量较大的场合,和Slotted ALOHA 算法一样,帧时隙

ALOHA 算法同样需要一个同步开销。

步骤

7

? 首先由阅读器把帧长度 N 发送给电子标签,电子标签则产生[1,N]之间的随机数,接下来各电子标签选择相应的时隙,与阅读器进行通信;

? 如果当前时隙与电子标签随机产生的数相同,电子标签则响应阅读器的命令,若不同,标签则继续等待。

? 假如当前时隙内仅有一个电子标签响应,阅读器就读取该标签发送的数据,读取完了以后就使该标签处于“无声”状态。

? 如果当前时隙内有多个标签响应,则该时隙内的数据就出现了碰撞,此时阅读器会通知该时隙内的标签,让它们在下一轮帧循环中重新产生随机数参与通信。

? 逐帧循环,直到识别出所有电子标签为止。

4、Dynamic FSA 算法:

? 该算法根据上一读写周期中统计的成功识别的时隙数、发生碰撞的时隙数、空闲时隙数

信息来调整下一读写周期的帧长度。具体调整方法有两种。

? 第一种:根据统计信息,当碰撞时隙数达到规定的上限时,读写器增大下一帧的长度;

当碰撞时隙数少于规定的下限时,读写器减少下一帧时隙数。使用该方法当标签规模不大时,读写器使用较短的帧长度就能快速识别标签,而当标签数量很多时,读写器不得不增加帧长度以减少碰撞次数。

? 第二种: 读写器以 2 或 4 个时隙数为一帧开始,如果没有一个标签能够成功识别,

读写器增加帧长度开始下一轮读写周期。重复上述过程直到至少有一个标签被成功识别。当有一个标签成功识别后,读写器立刻停止当前的读写周期,然后读写器再以开始时最小的帧长度开始下一轮读写识别。

? 该算法通过动态调整帧长度,相比帧时隙算法在标签规模不大时能够取得较理想的吞吐

率。可是一旦标签个数很大时,增大帧长度就不是很好的解决方法,因为帧长度不能无限制的增大。

? 采用ALOHA系列算法,假设阅读器射频工作范围内存在 n 个标签,理论上阅读器至

少需要 n 个时隙的时间才能成功识别完,最坏的情况下,阅读器经过多次搜索也未能识别出某个标签,导致出现“饿死现象”。

? 而Binary-Tree系列算法并不会采取退避原则,而是直接进行解决。当多标签同时发送

信息而碰撞时,读写器利用碰撞位将碰撞的标签分为两个或更多子集,对每个子集分别识别。如果存在碰撞则继续再划分,直到标签被完全识别为止。这样则有效地避免了标签的“饿死现象”。

四、RFID相关电磁场理论

读写器和电子标签通过各自的天线构建了二者之间的非接触信息传输通道。根据观测点与天线之间的距离由近及远可以将天线周围的场划分为三个区域:

非辐射场区:场强与距离天线的远近有关,电磁能量只在场源附近来回流动,随着与天线的

距离不断增大,场强不断减小。

分界:R=λ/2π

辐射近场区:菲涅尔区,电磁能量会脱离天线的束缚进入到外空间。该区域里辐射场的角度

分布与距天线口径的距离远近有关。

分界:R=2D2/λ(已知天线直径为D,天线波长为λ) 辐射远场区:夫郎荷费区,该区域里辐射场的角度分布与距天线口径的距离远近是不相关的。

五、RFID的能量传递

8