生物化学(第三版,课后答案 联系客服

发布时间 : 星期三 文章生物化学(第三版,课后答案更新完毕开始阅读

学习必备 欢迎下载

维生素C具有机酸性质,有防治坏血病功能。

2.对下列每一个酶促反应,写出参与反应的辅酶。

3.为谷氨酸变位酶反应选择一种适宜的辅酶并写出一个正确的机制:[化学方程式略]

2+

解:该反应适宜的辅酶可为5ˊ-脱氧腺苷钴胺素,重排机制:Co-碳键裂解,钴还原成Co状态,产生一个-CH2基,从底物吸取氢原子形成5ˊ-脱氧腺苷,并脱离底物上的基团(未成电子对),该中间物重排,-CH2-从一个碳原子移动到另一个碳原子,随后氢原子从5ˊ-脱氧腺苷是甲基转移,5ˊ-脱氧腺苷钴胺素重生。

T4、T5、T6与T3同类,略。

7.蛋清可防止蛋黄的腐败,将鸡蛋贮存在冰箱4-6周不腐败。而分离的蛋黄(没有蛋清)甚至在冷冻下也迅速腐败。

(1) 腐败是什么引起的?

(2) 你如何解释观察到的蛋清存在下防止蛋黄腐败?

答:(1)细菌生长;

(2)抗生物素蛋白结合生物素抑制细菌生长 。

8.肾营养不良(renal osleodystrophy)也叫肾软骨病,是和骨的广泛脱矿物质作用相联系的一种疾病,常发生在肾损伤的病人中。什么维生素涉及到肾的矿质化?为什么肾损伤引起脱矿物质作用?

2+

答:1,25-二羟维生素D3能诱导钙结合蛋白(CaBP)的合成和促进Ca-ATP酶的活性,这都有利于Ca的吸收。它也能促进磷的吸收;促进钙盐的更新及新骨的生成;促进肾小管细胞对钙磷的重吸收,减少从尿中排出。1,25-二羟维生素D3的主要靶细胞是小肠粘膜、骨骼和肾小管,肾损伤将影响1,25-二羟维生素D3的作用,故会引起脱矿物质作用。

学习必备 欢迎下载

9.一个临床病人由于代谢紊乱引起酸中毒,即低血和低尿pH。病人体液中化学分析显示分泌大量的甲基丙二酸。将这种化合物饲喂动物时,可以转变成琥珀酸。对于这一观察你能提供营养上的解释吗?

答:VB12(钴氨素)的缺乏,导致以腺苷钴氨素为辅因子的甲基丙二酸单酰CoA变位酶的酶促反应受阻,奇数碳脂肪酸代谢产生的丙酰CoA羧化生成甲基丙二酸单酰CoA后,无法进一步生成琥珀酰CoA而进入柠檬酸循环,于是在体内堆积。

10.四氢叶酸(THF)都以何种形式传递一碳单位?

5510510

答:四氢叶酸(THF)传递一碳单位的形式有:N-甲基-THF、N,N-亚甲基-THF、N-甲酰基-THF、N-555

甲酰基-THF、N-亚胺甲基-THF、N,N-次甲基-THF。

第十二章 核酸通论

1.核酸是如何被发现的?为什么早期核酸研究的进展比蛋白质研究缓慢?

答:1868年瑞士青年科学家F.Mescher由脓细胞分离得到细胞核,并从中提取出一种含磷量很高的酸性化合物,称为核素。

核酸中的碱基大部分由Kossel等所鉴定。1910年因其在核酸化学研究中的成就授予他诺贝尔医学奖,但他却认为决定染色体功能的是蛋白质,以后转而研究染色体蛋白质。Levene对核酸的化学结构以及核酸中糖的鉴定作出了重要贡献,但是他的“四核苷酸假说”认为核苷酸中含等量4种核苷酸,这4种核苷酸组成结构单位,核酸是由四核苷酸单位聚合而成。照这一假说,核酸只是一种简单的高聚物,从而使生物学家失去对它的关注,严重阻碍核酸的研究。当时还流行一种错误的看法,认为胸腺核苷酸代表动物核苷酸,酵母核苷酸代表植物核苷酸,这种观点也不利于对核酸生物功能的认识。

2.Watson和Crick提出DNA双螺旋结构模型的背景和依据是什么?

答:背景:20世纪上半叶,数理学科进一步渗入生物学,生物化学本身是一门交叉学科,也就成为数理学科与生物学之间的桥梁。数理学科的渗入不仅带来了新的理论和思想方法,而且引入了许多新的技术和实验方法。

依据:已知核酸的化学结构知识;E.Chargaff发现的DNA碱基组成规律;M.Wilkins和R.Franklin得到的DNA X射线衍射结果。此外,W.T.Astbury对DNA衍射图的研究以及L.Pauling提出蛋白质的α-螺旋结构也都有启发作用。

2.为什么科学界将Watson和Crick提出DNA双螺旋结构模型评为20世纪自然科学最伟大的成就之一?

答:因为DNA双螺旋结构模型的建立说明了基因的结构、信息和功能三者之间的关系,使当时分子生物学先驱者形成的三个学派(结构学派、信息学派和生化遗传学派)得到统一,并推动了分子生物学的迅猛发展。

4.什么是DNA重组技术?为什么说它的兴起导致了分子生物学的第二次革命?

答:DNA重组技术——在细胞体外将两个DNA片段连接成一个DNA分子的技术。在适宜的条件下,一个重组DNA分子能够被引入宿主细胞并在其中大量繁殖。

DNA重组技术极大推动了DNA和RNA的研究,改变了分子生物学的面貌,并导致了一个新的生物技术产业群的兴起,所以被认为是分子生物学的第二次革命。

5.人类基因组计划是怎样提出来的?它有何重大意义?

答:1986年,著名生物学家、诺贝尔奖获得者H.Dubecco在Sience杂志上率先提出“人类基因组计划”,经过了3年激烈争论,1990年10月美国政府决定出资30亿美元,用15年时间(1990-20XX年)完成“基因组计划”。

重大意义:人类对自己遗传信息的认识将有益于人类健康、医疗、制药、人口、环境等诸多方面,并且对生命科学也将有极大贡献。

学习必备 欢迎下载

6.为什么说生命科学已进入后基因时代?它的意思是什么?

答:由于技术上的突破,“人类基因组计划”进度一再提前,全序列的测定现已进入后基因组时代。意思:科学家的研究重心已从揭示基因组DNA的序列转移到在整体水平上对基因组功能的研究。

7.核酸可分为哪几种类?它们是如何分布的?

答:核酸分为脱氧核糖核酸(DNA)和核糖核酸(RNA)两大类。

原核细胞中DNA集中在核区,其核细胞DNA分布在核内,病毒只含DNA或只含RNA,RNA存在于原核生物、真核生物或部分RNA病毒中。

8.如何证明DNA是遗传物质?

353232

答:用S和P标记的噬菌体T2感染大肠杆菌,结果发现只有P标记的DNA进入大肠杆菌细胞内,35

而S标记的蛋白质仍留在细胞外,由此证明:噬菌体DNA携带了噬菌体的全部遗传信息,DNA是遗传物质。

9.参与蛋白质合成的三类RNA分别起什么作用?

答:rRNA起装配和催化作用;tRNA携带氨基酸并识别密码子;mRNA携带DNA的遗传信息并作为蛋白质合成的模板。

10.如何看待RNA功能的多样性?它的核心作用是什么?

答:RNA有5类功能:①控制蛋白质合成;②作用于RNA转录后加工与修饰;③基因表达与细胞功能的调节;④生物催化与其他细胞持家功能;⑤遗传信息的加工与进化。核心作用是:遗传信息由DNA到蛋白质的中间传递体。

第十三章 核酸的结构

1.比较DNA和RNA在化学结构上、大分子结构上和生物学功能上的特点。

答:DNA的一级结构中组成成分为脱氧核糖核苷酸,核苷酸残基的数目由几千至几千万个;而RNA的组成成分是核糖核苷酸,核苷酸数目仅有几十到几千个。另外在DNA分子中A=T,G=C,而在RNA分子中A≠U,G≠C。

二者的相同点在于:它们都是以单核苷酸作为基本组成单位,核苷酸残基之间都是由3,5-磷酸二酯键连接的。

二级结构:DNA是双链分子,2条链之间通过氢键和碱基完全配对(A-T,G-C)形成双螺旋的二级结构,一般是右手螺旋,也有左手螺旋。RNA是单链分子,分子内部的不同部位(有的近距离,也有远距离)能够通过碱基发生配对(A-U,G-C和G-U),形成既有单链,又有双链的RNA二级结构,RNA二级结构元件有:茎环(发夹)结构、内部环结构、分支环结构和中心环结构等。

2.从已经揭示的人类基因组结构有何特点?

9

答:人类细胞有23对染色体,单倍体基因组大约有3×10碱基对。

3.原核生物与真核生物mRNA有何特点?

答:原核生物以操纵子为转录单位,产生顺反子mRNA,即一条mRNA链上有多个编码区,5ˊ端和3ˊ端各有一段非翻译区(UTR)。原核生物mRNA,包括噬菌体RNA,都无修饰碱基。

真核生物的mRNA都是单顺反子,5ˊ端有帽子(cap)结构,然后依次是5ˊ非编码区、编码区、3ˊ非编码区、3ˊ端为聚腺苷酸(poly(A))尾巴,其分子内有时还有极少甲基化的碱基。

4.DNA双螺旋结构类型有那些基本要点?这些特点能解释哪些基本的生命现象?

答:DNA双螺旋结构模型的基本要点有:

学习必备 欢迎下载

(1)两条反向平行的多核苷酸链围绕同一中心轴相互缠绕,两条链均为右手螺旋。

(2)嘌呤与嘧啶位于双螺旋的内侧,磷酸与核糖在外侧,彼此通过3’,5’-磷酸二酯键相连接,形成DNA分子的骨架,碱基平面与纵轴垂直,糖环平面则与纵轴平行。多核苷酸链的方向取决于核苷酸间磷酸二酯键的走向,习惯上以C3’-C5’为正向。两条链配对偏向一侧,形成一条大购和一条小沟。

(3)双螺旋的平均直径为2nm,两个相邻的碱基对之间的高度,即碱基堆积距离为0.34nm,两个核苷酸之间的夹角为36°,沿中心轴每旋转一周有10个核苷酸,每一转的高度(即螺距)为3.4nm。

(4)两条核苷酸依靠彼此碱基之间形成的氢键相联系而结合在一起。

(5)碱基在一条链上的排列顺序不受任何限制。但根据碱基配对原则,当一条多核苷酸链的序列彼此确定后,即可决定另一互补的序列。

解释生命活动:双螺旋DNA是储存遗传信息的分子,通过半保留复制,储存遗传信息,通过转录和翻译表达出生命活动所需信息(蛋白质和酶)。

5.应用DNA晶体X射线衍射技术分析DNA对Watson-Crik模型有何修正?比较A-DNA、B-DNA、Z-DNA的主要特点。

答:(1)Watson-Crick模型认为每一螺周含有10个碱基对,所以两个核苷酸之间夹角是36°。但在Dickerson的十二聚体中,两个碱基间的夹角可由28°至42°不等,实际平均每一螺周含10.4个碱基对。分子大小的各参数也随序列不同而有变动。

(2)Dikerson所研究的十二聚体结构中,组成碱基对的两个碱基分布并非在同一平面上,而是碱基对沿长轴旋转一定角度,从而使碱基对的形状像螺旋桨叶片的样子,故称螺旋桨状扭曲,这种结构可提高碱基堆积力,使DNA结构更稳定。

A-DNA、B-DNA、Z-DNA的主要特点: 外形 螺旋方向 螺旋直径 碱基轴升 碱基夹角 每圈碱基数 螺距 轴心与碱基对 碱基倾角 糖环折叠 糖苷键构象 大沟 小沟 A型 粗短 右手 2.55nm 0.23nm 32.7° 11 2.53nm 不穿过碱基对 19° C3’内式 反式 很狭、很深 很宽、浅 B型 适中 右手 2.37 0.34 34.6° 10.4 3.54nm 穿过碱基对 1° C2’内式 反式 很宽、较深 狭、深 Z型 细长 左手 1.84nm 0.38nm 60°(1) 12 4.56 不穿过碱基对 9° 嘧啶C2’内式,嘌呤C3’内式 嘧啶反式,嘌呤顺式 平坦 较狭、很深 (1)注:Z-DNA的嘌呤和嘧啶核苷酸交替出现顺反式,故以二个核苷酸为单位,转角为60°

149

6.如果人体有10个细胞,每一细胞DNA含量为6.4×10bp,试计算一下人体DNA的总长度为多少米?它

914

相当于地球到太阳的距离(2.2×10 km)之几倍?[2.2×10km,100倍]

9141411

解:6.4×10bp×0.34nm×10个=2.2×10m=2.2×10km

119

2.2×10÷2.2×10km=100倍。

7.何谓H-DNA?它有何生物学意义?

答:当DNA的一段多聚嘧啶核苷酸或多聚嘧啶核苷酸组成镜像重复时,可折回产生H-DNA。由于这种

+

结构形成分子内三螺旋时胞嘧啶需发生H化,故称为H-DNA。H-DNA存在于基因调控区和其他重要区域,从而显示出它具有重要生物学意义。实验表明,启动子的S1核酸酶敏感区存在一些短的、同向或镜像重复的聚嘧啶-嘌呤区,该区域可以形成H-DNA,因而产生可被S1酶消化的单链结构。