第三章-第四章导数应用与积分 联系客服

发布时间 : 星期日 文章第三章-第四章导数应用与积分更新完毕开始阅读

f?x?f'???lim?lim'?A(或?). x?ag?x???ag??? 定理证毕.

上述定理给出的这种在一定条件下通过对分子、分母分别先求导、再求极限来确定未定式的值的方法称为洛必达法则.

推论 设函数f?x?与g?x?满足 (1)limf?x??0,limg?x??0;

x??x??(2) 当x充分大时,f'?x?,g'?x?存在,且g'?x??0;

f'?x?(3) lim'存在(或为无穷大),

x??g?x?f?x?f'?x?则有 lim. ?lim'x??g?x?x??g?x?定理2 设

(1)limf?x???,limg?x???;

?或x??? x?a x?a?或x???'(2)在点a的某去心邻域内(或当x充分大时),f?x?,g'?x?存在,且g'?x??0;

f'?x?(3) lim存在(或为无穷大), ' x?ag?x?(或x??)f?x?f'?x??lim'则有 lim.

x?a x?agxgx???或x??????或x???证明从略.

?例1 求lim2x????arctanx1x.

?解 lim2x????arctanx1x=limx????121?x2=limx=1.

x???1?x21?2xx3?3x?2例2 求lim3.

x?1x?x2?x?1x3?3x?23x2?36x3?lim?lim?解 lim3.

x?1x?x2?x?1x?13x2?2x?1x?16x?22ex?e?x?2x例3 求lim.

x?0x?sinxex?e?x?2xex?e?x?2ex?e?x?lim?lim解 lim

x?0x?0x?0x?sinx1?cosxsinxex?e?xex?e?x?lim?2. ?limx?0sinxx?0cosx例4 求limx?0tanx?x. 2xsinxtanx?xtanx?xsec2x?1tan2x1解 lim2=lim=lim=lim=. 322x?0xsinxx?0x?0x?0x33x3x例5 求lim3x?sin3x.

x?0(1?cosx)ln(1?2x)3x?sin3x3x?sin3x3x?sin3x ?lim?lim3x?0(1?cosx)ln(1?2x)x?012x?0xx?2x23?3cos3x3sin3x9?lim?. ?limx?0x?03x22x2lnx例6 求limn,(n?0).

x???x1lnx1lim解 limn=limx==0.

x???xx???nxnx???nxn?1解 limxn例7 求lim?x,(n为正整数,??0).

x???e解 反复应用洛必达法则n次,得

xnnxn?1n(n?1)xn?2lim?lim?lim?2?xx???e?xx????e?xx????e?limn!?0.

x????ne?x注意 将洛必达法则与其它求极限的方法结合使用,效果会更好.例如,能化简应先化简,能用等价无穷小替换或重要极限时,应尽量用.

x2sin例8 求limx?0sinx111x2sin2xsin?cosx?limxx,等式右边含有limcos1,该极限不存在(振荡),解 limx?0x?0sinxx?0xcosx故洛必达法则失效.改用如下方法

1x.

11limxsinx?lim(x?xsin1)?x?0x?0?0. limx?0sinxx?0sinxsinxx1limx?0xx2sinf'?x?f?x?注意 应用洛必达法则求极限lim时,如果lim不存在且不等于?,只' x?a x?ag?x?g?x??或x????或x???f?x?表明洛必达法则失效,并不意味着lim不存在,此时应改用其它方法求之.

x?agx???或x???二、 其它几种不定式的极限

0?型或型不定式外,还有0??,???,00,1?,?0型不定式,它们都可以经过适0?0?当变形,化为型或型不定式.

0?0?1.对于0??型,可将乘积化为除的形式,即化为型或型不定式来计算.

0?除了

xlnx?n?0?. 例9 求lim?nx?0解 这是0??型不定式.

1nlnx?xnx=limxlxn=lim??n=lim?0. lim?n?1??x?0x?0xx?0?nx?0?nx02.对于???型,可利用通分化为型不定式来计算.

0例10 求lim??x?11??x??. x?1lnx??解 这是???型不定式.

?xlnx?x?1?=limlnx xlnx?x?11??x==limlimlim???x?1??x?11lnx?x?1??x?1?lnxx?1???x?1?lnx?'x?1?1??lnx??x =lim?x?1'11?2xxx?a1x=

1. 2lnf(x)3.对于0,1,?型,可利用limf(x)?limex?a0?0?ex?alimlnf(x)?eA来计算,其中a是有限

数或无穷.

例11 求lim?cosx?ln?1?x2?.

x?01解 这是1型不定式.因为lim?cosx?ln?1?x2?=ex?0?1limln1?x2lncosx??x?0,而

?sinx1sinx1?x21lncosxcosx?lim??=, lim?limx?0x?0ln1?x2x?02x2xcosx2??1?x2所以 lim?cosx?ln?1?x2?=ex?01?12.

x. 例12 求lim?x?0x解 这是0型不定式,x?e0xxlnx,因为

1lnxx?lim??x??0, limxlnx?lim?lim???x?0x?01x?01x?0??2xx0xe?1. 所以 lim=?x?0x例13 求limx.

x???01x解 这是?型不定式,x?e1x1lnxx,因为

11limlnx?limx?0, x???xx???1所以 limx?e?1.

x???1x0习题3-2

1. 用洛必达法则求下列各极限:

x?sinx1?x2?1lim(1)lim; (2); x?0tanx?xx?0x2?xlnsin3xex?e?x(3)lim; (4)lim;

x?0sinxx?0?lnsin5x(5)limx?0ln?1?x2?secx?cosx; (6)limx?lnsinx?2???2x?12;

1??22x2limxe; (7)lim?2; (8)??x?0x?1x?1x?1??