中国钢桥发展概况 联系客服

发布时间 : 星期二 文章中国钢桥发展概况更新完毕开始阅读

⒈ 中国钢桥发展概况

常见的钢桥型式有:梁桥(I型板梁、桁梁、箱梁),拱桥(系杆拱、下承拱、上承拱、中承拱),以及悬索桥和斜拉桥等。大跨径公路钢桥主要是悬索桥(图1 a)和斜拉桥(图1b);铁路钢桥多为梁桥和拱桥。图1c为低塔斜拉公铁两用梁桥。按造桥方法,钢桥可分为:

a b

C d

图1 焊接钢桥的几种桥型

a---西陵长江大桥(公路桥);b--- 南京长江二桥(公路桥);

c---芜湖长江大桥(公铁两用桥);d---贵州北盘江大桥(铁路桥)

铆接桥(工厂制造和工地拼接均为铆接)、栓焊桥(工厂制造为焊接,工地拼接为高强度螺栓连接)和全焊桥(工厂制造和工地拼接均为焊接)。栓焊桥和全焊桥统称为焊接桥。

我国仅在长江上已有各种型式的桥梁29余座,其中接近半数为钢桥。“万里长江成了中国当代桥梁的展台。”(北京日报,2002.07.17)。关于焊接钢桥,可以公路桥为对象作比较,按大跨径悬索桥的跨径L≥600m,大跨径斜拉桥L≥400m,进行不完全统计,90年代以来中国已建成大跨径悬索桥7座,大跨径斜拉桥10座;同时期国外建成的大跨径悬索桥有10座(其中日本6座),大跨径斜拉桥有15座(其中日本6座)。按跨径大小排序〔1〕〔2〕,在世界上建成的全部悬索桥中排名前十位的焊接钢桥中,中国有2座:江阴长江大桥(L=1385m)排名第四,香港青马大桥(L=1377m)排名第五;日本明石海峡大桥L=1990m,居首位;丹麦的Great Belt大桥L=1624m,排名第二。而在全部斜拉桥排名前十位的焊接钢桥中,日本的多多罗大桥L=890m,居首位;中国有6座桥,排名第三、四、五、六、七和第九(南京长江二桥L=628m,排第三位;武汉长江三桥L=618m,排第四位)。其中“不少已跻身‘世界级’桥梁,展示出中国当代建桥技术达到了世界先进水平”。(北京日报2002.07.17)。

1996年布达佩斯国际焊接钢桥会议中,日本东京大学伊藤教授在题为“东亚焊接桥的技术进展”〔2〕(p.67)中讲了日本的情况,并着重评述了中国钢桥的发展,“中国当前正在蓬勃开展经济工作,条件允许,也需要在广阔的中国大地上大规模建设永久性基础设施。在

建设大跨度索承载桥(cable-supported bridge)方面,中国仅次于日本,也有显着的成就。”“(中国)目前正在非常积极地开发焊接桥梁。”“关于焊接桥,中国工程技术人员正努力开发几百米跨径的全焊结构。”实际上他还并不完全了解中国的发展情况。这时中国已经建成第一座全焊钢桥,即西陵长江大桥(L=900m,单跨悬索钢桥,1996年)。当然,这较之世界上第一座全焊悬索钢桥Severn大桥(英国,1966年,L=987.6m)晚了30年。在〔2〕中,伊藤教授提到:“日本钢结构的生产超过了其它所有国家”,“研究开发了多种用于日本钢桥的焊接技术,但迄今为止,关于工地焊接方面似乎还有些保守。”这说明当时日本还未全力开发全焊钢桥。看来,中国焊接钢桥已经开始疾步赶上并进入了世界的先进行列。为了便于了解,将我国近50年来有代表性的钢桥按建成年代排序,如表1所示。所谓有代表性,不涉及任何方面评价问题,而是为说明各时期桥型、钢材及钢梁制造安装方法等的演变。

中国焊接钢桥的发展并不是一蹴而就的,而是设计、冶金、焊接各方面工程技术人员和技术工人密切配合,经历了几个阶段,努力不懈地试验研究,攻克一个个难关,才可以取得令世人瞩目的成果。中国钢桥是从建设铁路桥起步的,相当长的时间里是采用铆接制造技术。采用的钢材是低碳钢。60年代初,开始栓焊钢桥的研制,并于1962年和1964年分别建成雒容(L=44.62m)和浪江(L=61.44m)两座试点钢桥,取得了初步经验。

修建成昆铁路时,西南铁路建设总指挥部于1965年组成“栓焊梁战斗组”,集合有铁路系统内外19个单位共68人。其中,清华大学与哈尔滨焊接研究所担负焊接试验工作,中国科学院声学研究所负责超声波探伤开创工作。以成昆铁路建设为契机,中国开始进入了栓焊钢桥时代。成昆铁路全线共建成栓焊钢桥44座122孔,用钢量1.2万吨(16Mnq),高强螺栓100万套。“栓焊结构基本上代替了铆接结构,是我国钢桥技术的一次重大改革,并为我国钢桥的进一步发展提供了大量实践的经验,起到了促进作用。”〔3〕

我国在70~80年代,桥梁用钢的质量不理想,同时也存在对焊接技术可靠性的疑虑,而妨碍焊接技术在桥梁钢结构上的应用。1966年列为当时重点工程的枝城长江大桥(701桥),为三跨连续桁梁铁路桥,L=160m,原设计为栓焊梁。专为该桥开发了新桥梁钢 15MnVNq,并进行了全部的焊接性和焊接工艺试验;但最终仍将栓焊结构改变为铆接结构。只当15MnVNq钢经过不断优化,并将白河大桥作为试验桥取得成功后,才在1992年应用于九江长江大桥,建成L=216m公铁两用三跨连续系杆拱栓焊钢桥(最大板厚为56mm)。

№ 1 2 3 4 5 6 7 8 9 年代 1957 1968 1970 1991 1992 1993 1995 1996 1996 桥名 武汉长江大桥 南京长江大桥 迎水河桥(成昆铁路) 上海南浦大桥 九江长江大桥 上海杨浦大桥 孙口黄河大桥 上海徐浦大桥 西陵长江大桥 表1 中国钢桥的发展概况 跨径类别 桥型 结构 /m 公铁 三跨 桁梁 128 两用 连续 公铁 三跨 桁梁 160 两用 连续 系杆刚性梁 铁路 112 拱 公路 公铁 两用 公路 铁路 公路 公路 斜拉 系杆拱 斜拉 桁梁 斜拉 悬索 结合梁 三跨连续 结合梁 四跨连续 混合梁 单跨 箱梁 423 216 602 108 590 900 钢材 CT.3(相当Q235) 16Mnq 16Mnq StE355 15MnVNq StE355 SM490C S355N 16Mnq 制造 铆接 铆接 焊接 焊接 焊接 焊接 焊接 焊接 焊接 安装 铆接 铆接 栓接 栓接 栓接 栓接 栓接 栓接 焊接 10 11 12 13 14 15 16 17 18 19 20 21 22 1997 1997 1999 1999 2000 2001 2001 2001 2001 2001 在建 在建 在建 香港青马大桥 虎门大桥 厦门海沧大桥 江阴长江大桥 芜湖长江大桥 南京长江二桥 宜昌长江大桥 天津塘沽 海河大桥 贵州 北盘江大桥 武汉 军山长江大桥 巫峡长江大桥 舟山 桃夭门大桥 润扬长江大桥北汊大桥 公铁 两用 公路 公路 公路 公铁 两用 公路 公路 公路 铁路 公路 公路 公路 公路 悬索 悬索 悬索 悬索 低塔斜拉 斜拉 悬索 单塔 斜拉 拱 斜拉 拱 斜拉 斜拉 三跨连续箱梁 单跨 箱梁 三跨连续箱梁 单跨 箱梁 三跨连续桁梁 三跨连续箱梁 单跨 箱梁 混合 箱梁 钢管砼 三跨连续箱梁 钢管砼 混合 箱梁 三跨连续箱梁 1377 888 648 1385 312 628 960 310 236 460 460 580 406 BS 4360 Gr.500YS 16Mnq 16Mn Fe510D (S355J2G3) 14MnNbq 16Mnq Q345E Q345E Q345D Q345C Q345C Q345D Q345D 焊接 焊接 焊接 焊接 焊接 焊接 焊接 焊接 焊接 焊接 焊接 焊接 焊接 栓接 焊接 焊接 焊接 栓接 焊接 焊接 焊接 焊接 焊接 焊接 焊接 焊接 进入90年代,经济发展对交通建设的需求日益增长,高速公路网的建设和跨江河、跨海湾通道的建设,迫切要求修建大跨度钢桥。同时,我国冶金技术在不断进步,优质低合金高强钢有了长足发展。除了山海关和宝鸡两个桥梁厂,大型船厂如沪东造船厂、江南造船厂、武昌造船厂及广州造船厂等均有条件承担大跨径钢桥的制造任务,并且已经成功地制造出高质量的焊接钢桥。

1991年开始,上海率先先后建成三座斜拉式栓焊公路桥:南浦大桥(1991年,L=423m,结合梁)、杨浦大桥(1993年,L=602m,结合梁)、徐浦大桥(1996年,L=590m,混合梁)。正在建设的上海卢浦大桥,L=550m,是世界上最大的一座钢拱公路桥。1996年、1997年相继建成全焊结构的单跨钢箱梁悬索桥:西陵长江大桥(L=900m)、虎门大桥(L=888m)。以后陆续建成江阴长江大桥、汕头

天津塘沽海河大桥及南京长江二桥等多座公路大桥。在建中的润扬长江大桥南汊大桥,L=1490m,为我国当前跨距最大的公路悬索桥。铁路钢桥也有明显进步,建造了诸如九江长江大桥、孙口黄河大桥、长东黄河二桥、芜湖长江大桥等公铁两用栓焊钢桥或铁路专用栓焊钢桥;而且结构型式由源于铆接钢梁的节点栓接到焊接整体节点,栓焊比例由初期“少焊多栓”发展到全焊整体节点,钢材由16Mnq发展到14MnNbq,钢板厚度由24mm 发展到56mm。芜湖长江大桥的建成,被铁路系统“誉为继武汉、南京、九江长江大桥之后我国桥梁建设的第四座里程碑〔4〕。” 这样,中国自90年代开始了焊接钢桥大发展的黄金时期。这表明,如实际有需要,中国完全具备条件有能力建设大跨度或超大跨度焊接钢桥。 2. 中国焊接钢桥的若干技术进展 2. 1 桥梁钢的开发与优化

我国在发展焊接钢桥的过程中主要是采用国产钢材(表1),钢的强度级别主要是屈服点σS≥345Mpa级,如16Mn(Q345)。少数大桥应用了σS≥420Mpa级的15MnVN。也采用过国外的钢材,钢的强度级别均相当于Q345,如SM490C、Fe510D、StE355之类。

50年代,武汉长江大桥采用的是前苏联提供的低碳钢,牌号为CT.3 (相当于Q235)。

60年代,南京长江大桥建桥初期,使用的也是前苏联提供的低合金钢,牌号为Нл2(σ

S

=290~390Mpa),但仅供应少量后就停止了。从此开始了自力更生。鞍山钢铁公司全力以赴

地开发16Mnq钢,以解南京长江大桥的“燃眉之急”。开始时,成材率很低,钢的质量不够理想,也不够稳定;但在以后的发展中逐步改善,并成为国内各个钢厂长时期的基本产品。16Mnq钢就是这样诞生的。

在制造成昆铁路栓焊钢梁时,使用了国内几个钢厂的16Mnq钢,曾遇到钢板严重的碳偏析情况。标准规定碳的含量上限为0.20%,而有的钢板碳含量高达0.24%。在工型杆件角焊缝埋弧焊时,焊缝产生热裂纹。不得不进行焊丝的优化工作,用H03MnTi焊丝代替H08A,焊剂HJ431也作了优化,结果才得以使用这批钢板。〔3〕

1985年以前,由于16Mn钢的生产工艺改进较小,钢的质量与国外同类钢材差距较大,钢中硫含量高,非金属夹杂物多,钢材性能低,特别是低温冲击韧性差,不能适应市场需要。因而,冶金部组织力量在“六.五”期间进行了科技攻关。在冶炼方面,采用了喷射冶金、稀土处理、微合金化等措施;在轧制方面,采取了控制轧制、热机械控制处理(TMCP)、水幕冷却等新工艺,使16Mn钢的质量得到了很大提高,主要指标达到了当时国外同类钢材的水平。〔5〕表2列出新冶炼工艺的效果。将优化的16Mn钢与近些年应用的几种同类钢材作对比,列于表3,从表3可见,优化的16Mn钢的韧性确已得到明显改善。

1966年初,为满足枝城长江大桥的需要,鞍山钢铁公司开始开发15MnVNq。针对设计的最大板厚为38mm,屈服点σS≥420Mpa,确定正火供货,以保证韧性。起初,经过焊接性和焊接工艺试验,发现,正火的15MnVNq对焊接热循环敏感,过热区韧性降低幅度比较大,必须进一步优化。1976年,15MnVNq的优化工作取得了成果,并应用于白河大桥。该桥为单线铁路桥,三跨连续桁梁,L=128m,作为试验桥已运营多年。15MnVNq钢的优化,实际是利用先进冶炼工艺尽可能降低硫和磷的含量,并适当降低碳含量,表4列出部分数据。

表2 改进冶炼工艺后16Mn钢化学成分和夹杂物的控制标准〔5〕 标准 新工艺16Mn 化学成分/% 夹杂物级别 C 0.14~0.18 0.12~0.20 P ≤0.025 ≤0.035 S ≤0.010 ≤0.035 硫化物 氧化物 ≤0.1 2~3 ≤1.5 2~3 YB(T)10-81 16Mnq 表3 改进工艺的 16Mn与同类钢的低温韧性对比 № 1 钢号 优化16Mn〔5〕 a KU /J.cm-2 -40℃ 140 - - - - - - 0℃ 200 - - - - - AKV /J -20℃ - 80~250 - - - 234 -40℃ 100 - - 65~180 190~220 140~270 - 2 Q345C(*巫峡桥,#军山桥) 3 Q345D(润扬长江大桥北汊桥) 4 5 Q345E(宜昌长江大桥) 14MnNbq(芜湖长江大桥) 70~280 * 50~260 # 6 日本SM490C(孙口黄河大桥)(Storebaelt桥) 7 丹麦Fe510D注:①#军山长江大桥钢料,武昌造船厂的-23℃试验数据。 ②Q345C、D、E按GB/T1591-94供货,为多批统计数据。