生化习题及大纲 联系客服

发布时间 : 星期日 文章生化习题及大纲更新完毕开始阅读

从这个表达式来看,随着蛋白质分子量的增大,它的表面积/体积的比例减小了。即随着蛋白质分子的增大,体积的增大比表面积增大更快。

②由于极性基团的亲水性,大多数分布在球状分子的表面,非极性侧链基团的疏水性,大多数聚集在球状分子的内部.由于随着分子量增大而体积增大,内部空间也增大。因此内部就可以容纳更多的具疏水侧链基团的氨基酸残基。所以随着球状蛋白质分子量的增大,亲水侧链氮基酸残基与疏水侧链氨基酸残基的比例将减小。

3-9解答:①由于2,3-BPG是同脱氧Hb A中心空隙带正电荷的侧链结合,而脱氧Hb F缺少带正电荷的侧链(β链143位的His残基),因此2,3-BPG是同脱氧Hb A的结合比同脱氧Hb F的结合更紧。②2,3-BPG稳定血红蛋白的脱氧形式,增高脱氧血红蛋白的份数。由于Hb F同2,3-BPG亲和力比Hb A低,Hb F受血液中2,3-BPG影响小,分子的氧合形式的份数较大,因此Hb F在任何氧分压下对氧的亲和力都比Hb A大。③在20―40氧分压下,Hb F对氧的亲和力比Hb A大,亲和力的这种差别允许氧从母亲血向胎儿有效转移。

3-10解答:在生理条件下,赖氨酸残基的带增电荷的侧链彼此排斥,不能形成α-螺旋。当它所处环境的pH上升超过它的侧链可界离基团的pK(>10.5)时才能形成α-螺旋。 3-11解答:蛋白质的分子形状影响它在凝胶过滤时的行为。分子形状较长的蛋白质在凝胶过滤时具有类似于分子较大的蛋白的行为。用SDS-PAGE测定的蛋白质分子量应该是比较准确的,因为变形后的蛋白质的迁移速度只取决于它的分子大小。

3-12解答:凝胶过滤分离的蛋白质是处在未变性的状态,如果被测定的蛋白质的分子形状是相同的或者是相似的,所测定的分子量应该是较准确的。SDS-PAGE测定蛋白质的分子量只是根据它们的大小。但这种方法能破坏寡聚蛋白质亚基间的非共价作用力,使亚基解离。在这种情况下,所测定的是亚基的分子量。如果有2-巯基乙醇存在,则能破坏肽链内或肽链间的二硫键。在这种情况下进行SDS-PAGE,所测定的分子量是亚基的分子量(如果亚基间没有二硫键)或者是肽链的分子量(如果亚基是由二硫键连接的几个肽链组成)。根据题中给出的信息,该蛋白质的分子量是200kD,由两个大小相同的亚基(100kD)组成,每个亚基由两条肽链(40kD和60kD)借二硫键连接而成。

3-13解答: 根据组分的百分含量求蛋白质的最低分子量可按下式计算:

细胞色素c的真实分子量=最小分子量×某氨基酸数=684×18=12300. 这一结果与用物理方法测定的结果很接近。

3-14解答:①根据它们的等电点以及它们在pH8.5条件下所带净电荷的多少,很容易鉴定出它们在电泳图谱上的位置(图2-6b)。

②P6与P3具有相同的pI,即是说,在pH8.5的条件下,它们带有等量的净电荷。但P6的分子量仅是P3的一半,它的迁移率是P3的2倍,电泳后它在支持物上位置应比P3更接近于负极(如图2-6b所示)。

(在一定粘度的介质中,在恒压下,带电颗粒的迁移率由电荷与颗粒大小的比例决定,即:μ(迁移率)∝(Q(电荷)/r(大小))。为了在Q/r基础上估计出相对迁移率,可用物质的分子量去除pI-pH,pI-pH视为Q值的一种量度。)

3-15解答:普通聚丙烯酰胺凝胶电泳分离蛋白质时主要是根据各组分的pI的差别。图2-7(A)的结果只呈现单一的带,表明该蛋白质是纯净的。

由于SDS是一种带负电荷的阴离子去垢剂,并且具有长长的疏水性碳氢链。它的这种性质不仅使寡聚蛋白质的亚基拆离,而且还能拆开肽链的折叠结构,并且沿伸展的肽链吸附在上面。这样,吸附在肽链上的带负电荷的SDS分子使肽链带净负电荷,并且吸附的SDS的量与肽链的大小成正比。结果是,不同大小的肽链将含有相同或几乎相同的Q/r值。由于聚丙烯酰胺凝胶基质具有筛分效应,所以,分子较小的肽链将比较大的、但具有相同的Q/r值的肽链迁移得更快。若蛋白质是由单一肽链或共价交联的几条肽链构成,那么在用SDS处理后进行SDS-PAGE,其结果仍是单一的一条带。若蛋白质是由几条肽链非共价结合在一起,在用SDS处理后进行SDS-PAGE,则可能出现两种情况:一种仍是一条带,但其位置发生了变化(迁移得更快),表明该蛋白质是由几条相同的肽链构成,另一种可能出现几条带,则可以认为该蛋白质是由大小不同的几条肽链构成. 图2–7蛋白质的鉴定 图2-7(B)的结果表明该蛋白质是由两种大小不同的肽链借非共

价键结合在一起的寡聚体蛋白质。从图2–7的电泳结果我们可以断定该蛋白质的等电点低于pH8.2。

3-16解答:①DEAE-纤维素是一种常用于蛋白质分离的阴离子交换剂。在分离蛋白质

样品之前,DEAE-纤维素先用较低的离子强度和pH为8的缓冲液平衡,蛋白质样品也溶于同样的缓冲液中。在这样的条件下,DEAE-纤维素大部分解离,并且带固定的正电荷。在这种pH下,蛋白质样品中各组分带净正电荷(但有差异,或带相反性质的电荷),这些带不同电荷的组分与DEAE-纤维素的结合力不同。洗脱液的离子强度影响带电颗粒与交换剂间的结合力。当升高洗脱液的离子强度时,会降低交换剂与被分离组分的静电吸引力。由上所述,该蛋白质混合物各组分被洗脱下来的先后顺序是:a>c>d>b。

②Sephadex是葡聚糖凝胶,它是具有不同交联度的网状结构,其颗粒内部的孔径大小可以通过控制交联剂与葡聚糖的比例来达到.因此它具有筛分效应.用它作为填充料制成层

析柱,可以根据被分离物质的大小进行分离。已有不同型号的葡聚糖凝胶用于不同物质的分离。当蛋白质混合样品随洗脱液向下流动时,比凝胶颗粒孔径大的蛋白质分子不能进入凝胶网格内,被排阻在凝胶颗粒的外部;比凝胶颗粒孔径小的蛋白质分子则能进入到网格内部。其结果是,分子大的蛋白质则随着洗脱液直接从柱上流出,分子比较小的蛋白质则因走了许多?弯路‖而被后洗脱下来。分子愈小,―弯路‖走得愈多,洗出的速度愈慢。根据这一原则,上述蛋白质混合物从SephadexG–50洗脱出的顺序是:b>c>a>d。

3-17解答:用凝胶过滤(即分子排阻层析)法先除去分子量为100,000、pI为5.4的蛋白质,余留下来的低分子量的含酶的混合物再用离子交换层析法分离,于是就能获得所需要的纯酶。 习题:

1.延胡索酸酶催化延胡索酸水合形成苹果酸,其逆反应苹果酸脱水转变成延胡索酸也能被该酶催化吗?为什么?

2.△G'和△G两者与化学反应的关系是怎样的?

3.借助米-曼氏方程υ=Vmax[S]/(Km+[S])研究底物浓度对酶反应速度影响的一种有用的方法是,在规定的实验条件下检验这个方程。在下述条件下,方程呈什么形式?①当〔S〕=Km时;②当〔S〕>>Km时;③当〔S〕<

4.①为什么kcat / Km比值能用来测定一种酶对它不同底物的优先权?②什么是酶的kcat / Km上限?③ kcat / Km值接近上限的酶常被说成达到“完美催化”。请解释。

5.人类免疫缺于病毒Ⅰ(HIV-Ⅰ) 基因编码一种该病毒装配和成熟所必需的蛋白酶

-1-1

(Mr=21500)。该蛋白酶能催化七肽底物水解,其kcat=1000 s和Km=0.075mol·L。(a)

-1

当HIV-Ⅰ蛋白酶的浓度为0.2mg mL时,计算底物水解的Vmax;(b)当七肽的–CO–NH–替换成–CH2–NH–时,所得到的衍生物不能被HIV-Ⅰ蛋白酶水解,而却可以作为该酶一种的

-1

抑制剂。在如(a)所示的条件下,该抑制剂浓度为2.5μmol·L时,Vmax是9.3×10-3 mol·L-1-1

·s。该抑制作用属于哪种类型?

6.为了确定某酶的催化反应的初速度的底物依赖关系,制备了一系列的l00ml含有不同底物浓度的反应混合物。向每个混合物加入相同量的酶后便开始反应。通过测定每单位时间(分钟)所形成的产物量而获得催化反应的初速度,其结果如下表所示。

表4—2

底物

浓度 初速度 底物浓度 初速度 底物浓度 初速度 (mol/L) (μmol/min) (mol/L) (μmol/min) (mol/L) (μmol/min)

0

?

-6 -6 -5

10 0.08 5×10 0.25 1×10 0.33 1×100.50

-4

0.48 1×10

-3

0.50 1×10

-2

①把表中的数据绘制成图,在给出的酶量下的Vmax是多少?

②根据米-曼氏方程,用Vmax、υ和〔S〕推演出Km的代数表达式。计算每个反应混合物的Km。 Km值取决于底物浓度吗?

③当底物浓度为0.1mol·L和l×l0mol·L时,计算它们的初速度。

④反应混合物保温2分钟后确定反应的初速度。当初始底物浓度为1×10mol·L时,计算产物的生成量。在2分钟后底物总量的百分之几被转换?

7.许多酶都表现出类似钟罩形的pH-活性依赖曲线。但是,不同的酶具有不同的活性最高点,即不同的最适pH。请你举例说明pH对酶活性影响的原因。

8.研究某抑制剂对单底物酶催化反应的影响,获得如下表的结果。

-2

-1

-1

-7

-1

①该抑制剂是竞争性还是非竞争性抑制剂?

②在无抑制剂存在时,该酶促反应的Vmax和Km是多少? ③在有抑制剂存在时,该酶促反应的Vmax和Km是多大? ④该反应的抑制常数(Ki)是多少?