生化习题及大纲 联系客服

发布时间 : 星期一 文章生化习题及大纲更新完毕开始阅读

XYA(或G) 或者 XYU(或C)

注意,摆动位置上的嘌呤总是被另一种嘌呤取代,嘧啶亦是如此。因此,虽然摆动位置上的变化改变了(A+T)/(G+C)比例,但密码子仍保持了对那一种氨基酸的专一。

4.解答:蛋白质的氨基酸顺序受它的mRNA的碱基顺序严格规定,因此进而受它的基因 的碱基顺序严格控制。除甲硫氨酸和色氨酸外的所有氨基酸都有一种以上的密码子。因此,虽然一种密码子只能规定唯一一种氨基酸,但是任何一种氨基酸都可能被一种或几种密码子编码。要想推导出编码已知氨基酸顺序的蛋白质的唯一一种mRNA是不可能的。例如ACA-AAA-CAU-GGU-只能编码Thr-Lys-His-Gly。但是,该氨基酸顺序也可以由AUU-AAG-CAC-GGG编码。

5.解答:DNA的编码链的核苷酸顺序与mRNA的顺序相同,只是由T代替了U。因此, mRNA的该密码子将由AUA变成了AUG,于是就会导致亮氨酸残基被甲硫氨酸残基取代。

6.解答:琥珀突变产生于下面任何一种点突变:

XAG、UXG或UAX→UAG

XAG密码子编码Gln、Lys和Glu;UXG密码子编码Leu、Ser和Trp;UAX密码子(这里不是终止密码子)只规定Tyr。因此,编码这些氨基酸的密码子可能遭受点突变转变成UAG。 7.解答:起始tRNA的反密码子与GUG配对是通过密码子5'位核苷酸和反密码子3'位的核苷酸之间所形成非标准的G/U碱基对实现的。这种非标准配对与反密码子的摆动性无关,因为反密码子的5'位是摆动位置:

起始tRNA的反密码子 3'—U A C—5'

︱︱︱ mRNA的密码子 5'—G U G—3'

8.解答:当错误的氨基酸仍结合在异亮氨酰-tRNA合成酶的活性部位时,酶本身能识别这 个错误的氨酰腺苷酸E﹣(Val-AMP),并能水解它。这样,在缬氨酸和异亮氨酸之间的识别出现两次。这就导致错误的频率大大减少,实际上的错误频率大约只有1/100×1/35=1/3500。

9.解答:所有这三种因子都是蛋白质。在细胞内的Mg2+浓度下,70S核糖体是不会解离 的。但30S亚基与mRNA结合之前必须从70S核糖体上解离下来,即与50S亚基分离。这一分离过程可被IF-3所促进。一旦30S亚基游离出来,IF-3即与它紧密地结合。它的结合部位靠近16S rRNA的3'-OH端,有助于识别mRNA起始密码于AUG前的非翻译区的前导顺序。

IF-2的功能是:在GTP的存在下,与fMet-tRNAfMet形成一种复合物,促使fMet-tRNAfMet

结合到30S亚基上,然后在IF-1的促进下正确地结合在mRNA的起始密码子上。当fMet-tRNAfMet结合后,IF-3即从复合物上解离下来,使30S与50S亚基的结合部位暴露出来。50S亚基同30S复合物的结合,使GTP水解,促进IF-1和IF-2释放出来。70S起始复合物的形成,便具备了肽链延伸的条件。

10.解答:产物是Leu-Gly-aa-tRNA,它占据着核糖体的P部位。因为肽键的形成以及移位反应能发生。但由于梭链孢酸阻止了EF-G·GDP从A部位上解离下来,因而就阻止了下一个一个氨酰-RNA进入到A部位。

11.解答:①氨酰-tRNA合成酶,它能同tRNA结合并催化tRNA的氨酰化;②细菌IF-2和真核生物eIF-2,它们能同起始氨酰-tRNA结合,并在翻译起始是将其插入到核糖体的P部位;③细菌EF-Tu和真核生物eEF-1α, 它们能同携带氨基酸的tRNA结合,并在肽链延长时将其卸下到核糖体A部位;④核糖体,它是由rRNA和蛋白质构成的分子很大的复合体,含有同tRNA专一结合的A部位和P部位;⑤mRNA,它能通过密码子与反密码子间形成的氢键彼此相互识别。

12.解答:可能的密码子是:UUU、UUG、UGU、GUU、UGG、GUG、GGU、GGG。这些密码子分别编码Phe、Leu、Cys、Val、Trp和Gly。

1.为什么操纵子的基因组织有利于对细菌基因组未鉴定的开放阅读框(ORFs)功能的揭示?

2.为什么lac操纵子结构基因的表达通常处在被阻遏的状态,而trp操纵子的结构基因的表达通常处在消阻遏的状态?

3.为什么在有葡萄糖存在下与乳糖代谢有关酶的合成被有效的阻遏?

4.在lac操纵子中,①lac操纵基因的突变、②lacI基因的突变和③启动子的突变对基因表达的可能影响。

5.E.coli CAP同它相应的乳糖操纵子部位的结合受cAMP的影响,阻遏蛋白的结合受到别乳糖的影响。细胞内的cAMP的浓度受细胞外的葡萄糖浓度的影响,别乳糖受乳糖的影响。请考虑下面三种情况:①把E.coli放置在富含葡萄糖的介质中培养,②把E.coil放入到富含乳糖的介质中培养,③把E.coli放入到含乳糖和葡萄糖的介质中培养。对于上述每种情况,预计(a)对细胞内的cAMP和别乳糖的影响;(b)对CAP和阻遏蛋白质同乳糖操纵子结合的影响;(c)对β-半糖苷酶产生的影响。

6.为什么lac Z基因缺损的大肠杆菌细胞在葡萄糖缺乏下加入乳糖之后半乳糖苷酶活性降低?

7.请预测前导肽顺序的去除对trp操纵子调节的影响。

8.弱化作用的发生需要一个前导区的存在。请预测下述变化对trp操纵子的影响:①整个前导区缺失;②编码前导肽的顺序缺失;③前导区一个AUG发生突变。

9.当E.coli细胞生长在以葡萄糖为唯一碳源的介质中时,突然加入色氨酸,细胞继续生长,每30 min分裂一次。如果①trp mRNA是稳定的(只是很缓慢地降解),②trp mRNA迅速降解,但色氨酸合酶是稳定的,③trp mRNA和色氨酸合酶两者都快速降解,请描述色氨酸合酶活性水平的变化。

10.请解释为什么自然选择对RNA的不稳定性有利。 习题解答:

1.解答:由于编码功能上相关的蛋白质基因往往以操纵子的形式出现,因此,一个操纵子中的一个或几个基因的鉴定有利于推测其余基因的功能。

2.解答:细菌通常优先利用葡萄糖作为碳源,且葡萄糖也是最通用的一种碳源。在有葡萄糖存在的条件下合成与乳糖代谢有关的酶则是一种浪费。因此在有葡萄糖存在的情况下,编码与乳糖代谢有关的酶的基因总是处在被阻遏的状态。只有当以乳糖作唯一碳源时,乳糖的别构形式别乳糖起到一种诱导剂的作用,诱导与乳糖代谢有关酶的表达。因此lac操纵子是酶合成被诱导的例子。

色氨酸是合成蛋白质的的前体,随时都需要。因此,编码与色氨酸合成有关的酶的基因通常处在消阻遏的状态,此时阻遏物处在无活性状态。只有当trp操纵子的结构基因表达的产物催化色氨酸合成过量的情况下,色氨酸作为一种辅阻遏物激活阻遏蛋白,使其结合到操纵基因上,阻抑结构基因的继续表达。所以,trp操纵子是酶合成阻遏的例子。

3.解答:lac启动子相对可分为两部分,即RNA聚合酶结合部位和CRP-cAMP结合部位。CRP(或CAP,叫做分解代谢物基因活化蛋白)-cAMP结合部位富含G·C bp。当CRP-cAMP结合在该部位时,能促近链的分离而有利于RNA聚合酶催化结构基因的转录。但在有葡萄糖存在下,葡萄糖的某种分解代谢物能抑制细菌腺苷酸环化酶的活性,激活磷酸二酯酶,于是 cAMP水解转变成AMP,由此不能得到足够浓度的CRP-cAMP去起动RNA聚合酶对结构基因的转录。于是与乳糖代谢有关酶的表达被有效的抑制。只有当以乳糖为唯一碳源时,才不会存在葡萄糖阻遏的现象,CRP-cAMP水平升高,促进RNA聚合酶对结构基因的转录,从而有利于与乳糖代谢有关酶的合成。

4.解答:①操纵子组成性表达。在操纵基因所发生的大多数突变都会导致阻遏物同操纵基因的结合力显著减弱或失去结合的能力。②或是组成性表达,如同在①中所说的那样;或是持续表达,如果突变破坏了同乳糖和相关的化合物结合的能力,如同像诱导剂那样。③或是增强或是减弱操纵子的表达,取决于突变是否使启动子变得更强或是更弱。

5.解答:①在丰富的葡萄糖存在下,cAMP的细胞内水平是很低的。由于别乳糖是由乳糖产生,因此别乳糖的水平低,并且不受葡萄糖浓度的影响。在cAMP缺乏的情况下,CAP不同启动子部位结合,RNA聚合酶也不能结合到它的进入部位.此外,阻遏蛋白结合到操纵基因上。由于在这样的条件下,别乳糖的浓度很低,因此乳糖操纵子的结构基因不被转录,β-半乳糖苷酶也不会产生。

②在丰富的乳糖存在下,细胞内的别乳糖的水平显著升高,因为乳糖可被异构化为别乳 糖。在葡萄糖的缺乏下,细胞内的cAMP的水平升高。高水平的别乳糖导致无活性的别乳糖-阻遏蛋白复合物形成,于是这个复合物便从操纵基因上释放出来。此外,高水平的cAMP导致有活性的cAMP-CAP复合物形成。这个复合物可以结合到启动子部位上,允许RNA聚合酶进入。在这些条件下,与乳糖代谢有关的基因被转录,β-半乳糖苷酶产生。

③在丰富的葡萄糖和乳糖都同时存在下,细胞内的别乳糖水平很高,但cAMP的水平很低。如同②所述,高水平的别乳糖引起阻遏物从操纵基因部位上释放出来,但低水平的cAMP引起CAP从启动子部位上释放出来。在这样的情况下,RNA聚合酶不能进入,尽管阻遏物被解除,但与乳糖代谢有关的基因不被转录。因此,β-半乳糖苷酶不会产生。

6.解答:Z基因编码的产物是β-半乳糖苷酶。lac Z基因的缺损导致β-半乳糖苷酶不能正常产生,因而不能促使乳糖转变成它的异构体别乳糖(β-半乳糖苷酶有时也能催化乳糖发生糖基移位反应生成别乳糖)。因此,lac酶(包括β-半乳糖苷透过酶)都不能合成。 7.解答:前导肽顺序是由弱化基因5'-段的一段顺序(顺序1)编码的。弱化基因存在于trp L内,它的转录产物含有4个互补的片段,它们能形成1,2-茎环和3,4-茎环。由于3,4-茎环及其后面连续的UUU?(类似不依赖于ρ因子的转录终止信号)是一种有效的转录终止信号。因此转录就会在此部位终止。如果顺序1缺乏,不能形成1,2-茎环,则导致2,3-茎环的形成。2,3-茎环阻止了3,4-茎环的形成,转录因此而继续进入到trp操纵子余下部分。在这样的情况下,trp操纵子只受到阻遏物的调节。

8.解答:①如果整个前导区缺失,弱化作用则是不可能的,转录只是单纯由trp阻遏物控制。trp操纵子转录的总速度会增高。②如果编码前导肽的顺序缺失,转录也只由trp阻遏物控制。编码前导肽的顺序缺失,则没有片段1的形成,从而允许形成稳定的2,3茎环(发夹)结构。由于既没有停顿部位(1,2茎环)的形成,也没有终止子(3,4茎环)的形成,因此,已起动的trp操纵子的转录将继续进行。③如果前导区不含AUG,trp操纵子则难以起动转录,由于起始密码子的缺乏,前导肽的合成不会发生,1,2茎环和3,4茎环几乎总处在形成的状态,从而导致转录的终止。

9.解答:①尽管有色氨酸的存在,色氨酸合酶保持高水平;②色氨酸合酶仍保持高水平;③色氨酸合酶水平迅速降低,避免色氨酸浪费性合成。

10.解答:RNA对体内降解的敏感性产生这样一种可能,即通过调整mRNA降解的速度来调节基因的表达。这是自然选择的结果。如果mRNA是稳定的,它也许继续指导翻译,即使细胞不再需要该基因编码的蛋白质,从而造成极大的浪费。